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Samenvatting

Eens de ontwikkeling van een programma of een ander stuk software
voltooid is en het naar zijn eindgebruikers verspreid is, willen de on-
twikkelaars dat hun software op de bedoelde manier uitvoert. Het kan
echter in het voordeel van een aanvaller zijn dat de software van zijn
bedoelde gedrag afwijkt. Beschouwen we twee scenario’s: in het eerste
scenario bevat de software bugs die aanvallers kunnen uitbuiten om het
programma over te nemen en te laten gedragen op onbedoelde wijze; in
het tweede scenario loopt het programma op de aanvallers’ eigen ma-
chine, en kunnen deze met het gedrag knoeien—zelfs zonder bugs. Het
eerste beschreven scenario is dat van arbitraire code-uitvoering, het tweede
is een man-at-the-end of MATE-aanval. Arbitraire code-uitvoering kan
door aanvallers gebruikt worden om een server op afstand over te nemen,
en diens waardevolle data zoals een paswoordendatabank in gevaar te
brengen. Voor MATE (Man-At-The-End)-aanvallen daarentegen, zijn de
aanvallers de vermeende eindgebruikers van de software, en ligt hun
doel in de eigendommen vervat in het programma zelf: cryptografische
sleutels, gepatenteerde algoritmes, of licentiecontroles. Ongeacht het
soort aanval, is het duidelijk dat software beschermd moet worden om
ernstige economische schade te vermijden. Het is dus belangrijk dat
de mensen die software ontwerpen en ontwikkelen de veiligheid ervan
in acht nemen. We kunnen echter niet verwachten dat elke software-
architect en ontwikkelaar een expert is op het vlak van beveiliging. Ze
zijn niet op de hoogte van alle mogelijke aanvallen, noch hebben ze ken-
nis van alle gepaste beschermingen. Het softwareontwikkelingsproces
hoort dus meer gedachtig te zijn op het vlak van beveiliging, maar we
kunnen de betrokkenmensen ook helpen door het toepassen van bescher-
mingstechnieken te integreren in de ondersteunende hulpmiddelen die
gebruikt worden door de levenscyclus van software. Die hulpmiddelen
staan in het algemeen bekend onder de noemer systeemsoftware.
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Ik heb mijn onderzoek verricht op het niveau van systeemsoftware,
waarbij mijn focus lag op het verdedigen tegen arbitraire code-uitvoering
en ... . . . . . . . . .MATE-aanvallen. Mijn doelen waren het verbeteren van bestaande
en het introduceren van nieuwe beschermingen, alsook het verbeteren
van de ondersteuning voor beschermingen om hun gebruiksgemak te
verbeteren. Het merendeel van mijn werk situeerde zich op het binaire
niveau, waarbij binaire programmacode getransformeerd wordt met het
oog op bescherming.

Als bescherming tegen aanvallers wordt er vaak gebruik gemaakt
van diversiteit. Diversiteit houdt in dat elke gebruiker zijn eigen, gedi-
versifieerde versie van het programma heeft. Bij de vorm van diver-
siteit die wij bestudeerden, verschillen de programmabestanden die
verspreid worden aan de gebruikers. Diversiteit voorziet een proba-
bilistische bescherming tegen aanvallen die arbitraire code-uitvoering
beogen, en belemmert daarnaast ook ... . . . . . . . . .MATE-aanvallers. Elke gebruiker
zijn eigen programmabestand geven leidt echter tot een aantal uitdagin-
gen die het wijdverspreid gebruik van diversiteit tegenhouden. Eén
zo’n uitdaging is met crashrapporteersystemen, die het genereren en
aggregeren van crashrapporten automatiseren. Google Breakpad is een
voorbeeld van een type crashrapporteersysteem waarbij de crashrappor-
teerserver de debuginformatie van het programmabestand bijhoudt. Om
echter gediversifieerde programma’s te ondersteunen, zou deze server
de debuginformatie voor elk gediversifieerd programmabestand moeten
bijhouden. Voor programma’s met miljoenen gebruikers is dit natuurlijk
niet schaalbaar. We hebben voor dit probleem een oplossing ontworpen,
waarbij Google Breakpad uitgebreid wordt tot ∆Breakpad. ∆Breakpad
werkt door programma’s te diversifiëren, en deze uit te breiden met
informatie die de toegepaste diversificaties beschrijft. Dit laat de server
toe om de debuginformatie te reconstrueren voor een gediversifieerd
programmabestand dat crashte. Deze oplossing vergemakkelijkt het
gebruik van diversiteit, en zorgt zo voor meer veiligheid.

Hoewel diversiteit ook kan verdedigen tegen... . . . . . . . . . .MATE-aanvallen, wordt
het voornamelijk als bescherming tegen arbitraire code-uitvoering ge-
bruikt. Als we onze focus verleggen naar ... . . . . . . . . . .MATE-scenario’s, kan een
programma aangevallen worden via talrijke aanvalsvectoren. Bijgevolg
bestaan er ook talrijke beschermingstechnieken die het gebruik van spec-
ifieke aanvalsvectoren bemoeilijken. We hebben twee van zulke tech-
nieken verbeterd: self-debugging, en code mobility.
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Self-debugging is een beschermingstechniek waarbij aanvallers wor-
den belet hun debugger aan het programma aan te hechten, gezien de-
buggers vaak worden gebruikt in ... . . . . . . . . .MATE-aanvallen. Het programma
transformeren zodat het niet van buitenaf gedebugged kan worden
voorziet het dus van bescherming. Omdat slechts één enkele debugger
kan aangehecht worden per proces, kan het kwaadwillig gebruik van een
debugger door aanvallers tegengehouden worden door het programma
zichzelf te laten debuggen. Deze bescherming wordt geïmplementeerd
door een debuggercomponent in te bedden in het programma tijdens
het buildproces, en het programmabestand zo te herschrijven zodat het
afhankelijk wordt van de debugger, die dan niet meer simpelweg verwi-
jderd kan worden. Hoewel er reeds implementaties van self-debugging
bestaan, zijn de gebruikte methodes om een afhankelijkheid creëren
tussen het programma en de ingebedde debugger onvoldoende. Onze
verbeterde techniek zorgt voor een hechtere koppeling tussen het pro-
gramma en zijn debugger, waardoor de techniek minder kwetsbaar is
voor geautomatiseerde aanvallen.

Code mobility is een online beschermingstechniek waarbij delen van
het programma worden gedownload van een vertrouwde server tijdens
de uitvoering. Dit bemoeilijkt het analyseren van en knoeien met pro-
gramma’s door aanvallers. Vooral statische aanvallen worden hierdoor
belemmert, gezien slechts een deel van het volledige programma aan-
wezig is in het programmabestand. Echter, bestaande implementaties
van codemobilitywerken oftewel niet op het binaire niveau, oftewel laten
het mobiel maken van uitgekozen delen van het programma niet toe,
wat het combineren met andere beschermingstechnieken op het binaire
niveau belemmert. Daarom ontworpen we ons eigen raamwerk voor
code mobility. Dit raamwerk werd op binair niveau geïmplementeerd,
middels een binaire herschrijver. Door middel van annotaties in de bron-
code kunnen ontwikkelaars specificerenwelke delen van het programma
mobiel gemaakt moeten worden. Het raamwerk splijt de binaire code
verbonden aan deze annotaties af van het programma en vormt er mo-
biele codeblokken uit. Dit bemoeilijkt het verstaan van de code door
aanvallers, maar laat ook een fijnere granulariteit in de codeblokken
toe. Daarenboven kan deze beschermingstechniek ook gebruikt wor-
den om delen van andere beschermingen bij te werken, wat krachtigere
combinaties toelaat.

Hoewel het verbeteren van individuele beschermingstechnieken be-
langrijk is, kan het gebruik van één aanvalsvector bemoeilijken er toe lei-
den dat aanvallers hun aandacht vestigen op andere aanvalsvectoren die,
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in vergelijking, gemakkelijker geworden zijn. Bijgevolg is het nog belan-
grijker om meerdere beschermingstechnieken te combineren zodat alle
mogelijke wegen van de minste weerstand verhard worden. Bovendien
kost het tijd voor aanvallers om nieuwe aanvalsvectoren te identificeren,
en vervolgens een aanval op te zetten en op te schalen. Nieuwe aanvallen
ontwikkelen is een iteratief proces, en herhaalbaarheid is dus belangrijk:
als het doelprogramma verandert tijdens dit proces moeten aanvallers
hun hulpscripts aanpassen, en misschien hun aanpak heroverwegen
of de aanvalsvectoren opnieuw identificeren. Als beschermingstech-
nieken gediversifieerd kunnen worden voor verschillende gebruikers
alsook doorheen de tijd, dan zal dit zowel de benodigde inspanningen
om een nieuwe aanval te ontwikkelen doen toenemen, als de tijdspanne
verkleinen waarbinnen de aanval werkt en opbrengsten genereert voor
de aanvallers. Op basis van onze code mobility techniek hebben we dus
een raamwerk ontworpen dat beschermingscombinaties kan variëren
doorheen de tijd, en dus de beschermingen vernieuwen. Dit raamwerk
maakt frequente aanpassingen aan de software mogelijk, en maakt het bi-
jgevolg nog moeilijker—en minder winstgevend—om deze aan te vallen.

Samenvattend kunnen we stellen dat dit werk de grenzen verlegd
heeft op het vlak van beschermingen tegen ... . . . . . . . . .MATE-aanvallen, en het
gebruik vergemakkelijkt van diversiteitstechniekendie beschermen tegen
zowel ... . . . . . . . . .MATE-aanvallen als arbitraire code-uitvoering.



Summary

After development of a piece of software has finished and it has been
released to its end users, the developers want their software to execute in
the way it is intended to execute. However, there might be attackers out
there who might benefit from the software deviating from its intended
behavior. Consider two scenarios: in the first, the software contains bugs
that can be exploited by attackers to take over the program and make
it behave in unintended ways; in the second, the program runs on the
attackers’ own machine, and can be tampered with—even without any
bugs and exploits. This first described scenario is known as arbitrary
code execution, the second as aMATE (Man-At-The-End) attack. Arbitrary
code execution can be used by attackers to take over a remote server
and compromise the valuable data there such as a database containing
credentials. In the case of ... . . . . . . . . .MATE attacks, on the other hand, the attackers
are the supposed end users of the software, and they target valuable
assets embedded in the program itself: cryptographic keys, proprietary
algorithms, or licence checks. No matter the specific attack, it is clear
that software needs to be protected to avoid serious economical damage.
It is thus important for those that design and develop software to keep its
security in mind. However, we cannot expect every software architect or
developer to be a security expert, knowing every possible way in which
their software can be attacked and every possible way to guard it. The
software development process should be more mindful of security, but
we can also help by integrating the application of protection techniques
into the supporting tools used during the life-cycle of the software, which
are generally known as system software.

I performedmy research at the system software level, and focused on
protecting against arbitrary code execution and ... . . . . . . . . .MATE attacks. My aims
were improving existing protections, introducing new protections, and
improving support for protections to ease their adoption. Most of my



XII SUMMARY

work on protectionswas at the binary or native level, directly transforming
the binary code of a program to protect it.

Diversity is often used to thwart attackers. Diversity means every
user has their own, diversified version of the program. In the form of
diversity we studied, all of the program binaries distributed to users
differ. Diversity provides a probabilistic defense against attacks aiming
to gain arbitrary code execution, and obstructs ... . . . . . . . . . .MATE attackers as well.
Having every user run their own program binary presents some chal-
lenges, however, slowing the adoption of diversification techniques. One
issue is with crash-reporting systems, which automate the generating
and aggregation of crash reports. Google Breakpad is an example of a
type of crash-reporting system that requires the crash-reporting server to
store the binary’s debug information. To support diversified programs
the server would have to store the debug information for every diver-
sified binary. For programs with millions of users, this is not scalable.
We designed a solution to this problem, extending the Google Breakpad
crash-reporting system to create ∆Breakpad. ∆Breakpad works by di-
versifying programs and extending them with information describing
the applied diversifications, allowing the server to reconstruct the debug
information for a diversified binary that crashed. This solution facilitates
the adoption of diversity, thus improving security.

Although diversity can defend against ... . . . . . . . . .MATE attacks, it is mostly
used as a defense against arbitrary code execution. When shifting our fo-
cus to a ... . . . . . . . . . .MATE scenario, there are many attack vectors throughwhich the
program can be targeted. Consequently, there are also many protection
techniques that make it harder for attackers to use specific vectors. We
improved on two of these techniques: self-debugging, and code mobility.

Self-debugging is a protection technique that aims to keep attackers
from attaching a debugger. Debuggers are often used in ... . . . . . . . . .MATE attacks,
and transforming a program in such a way that is cannot be debugged
thus provides protection. As only a single debugger can be attached to a
process, the malicious use of a debugger by attackers can be countered
by having the protected program debug itself. This protection is imple-
mented by embedding a debugger component in the program during its
build process, and rewriting the program binary so that it depends on
the debugger, meaning the debugger cannot simply be removed. While
self-debugging implementations already exist, the methods through
which they make the program depend on the embedded debugger are
inadequate. Our improved technique creates a tighter coupling between
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the program and its debugger, thusmaking the technique less vulnerable
to automated attacks.

Code mobility is an online protection technique where parts of the
program are downloaded at run time from a trusted server, making it
harder for attackers to analyze and tamper with the program. In particu-
lar, this hinders static attacks, as only part of the program is present in
the binary. However, existing implementations of code mobility either
do not operate on binary code, or do not allow making only select parts
of a program mobile, hindering composability with other protections at
the binary level. We therefore present our own code mobility framework,
implemented at a binary level using a binary rewriter. Through source
code annotations, developers can specify which parts of the program are
to be made mobile. The framework then splits off the pieces of native
code associated with these annotations, and forms mobile code blocks
out of them. This makes code comprehension harder, but also allows
for finer granularity in the code blocks that are made mobile. Further-
more, our code mobility technique can be used to replace parts of other
protections, which allows more powerful combinations.

While improving individual protection techniques is important, mak-
ing it harder for attackers to use one attack vector might focus their
attention on other attack vectors which have become easier by compari-
son. Therefore, it raises the importance of combiningmultiple techniques
to ensure possible paths-of-least-resistance are hardened. Furthermore,
it takes time for attackers to identify successful attack vectors, and subse-
quently use these to set up and scale up attacks. Developing new attacks
is an iterative process, and repeatability is thus important: Attackers
expect repeated program executions to be sufficiently similar that their
attacks keep working, both during development and after distribution
of these attacks. If the target program changes while an attack is being
developed, attackers have to adapt their helper scripts and perhaps re-
think their approach or re-identify attack vectors. If protections can be
diversified across user instances, as well as across time, this will both
increase the attackers’ effort in developing an attack, and decrease the
window of opportunity during which this attack works and generates
income for them. Building upon our code mobility technique, we there-
fore developed a framework that diversifies protection combinations
across time, i.e., renews the protections. This renewability framework
allows for frequent changes to the software components under attack,
and consequently makes it even harder—and less profitable—to attack
the software.
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In conclusion we can summarize this work has pushed the state of
the art in protecting against ... . . . . . . . . . .MATE attacks, as well as eased the adoption
of diversification-based techniques that are defend against both ... . . . . . . . . . .MATE
attacks and arbitrary code execution.
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Chapter 1

Introduction

“The universe is run by the complex interweaving of three elements: energy, matter,
and enlightened self-interest.”

—G’Kar, Babylon 5

After development of a piece of software has finished and it has been
released to its end users, the developers want their software to execute in
the way it is intended to execute. However, there might be attackers out
there who might benefit from the software deviating from its intended
behavior. Consider two scenarios: in the first, the software contains bugs
that can be exploited by attackers to take over the program and make
it behave in unintended ways; in the second, the program runs on the
attackers’ own machine, and can be tampered with—even without any
bugs and exploits. This first described scenario is known as arbitrary
code execution, the second as aMATE (Man-At-The-End) attack. Arbitrary
code execution can be used by attackers to take over a remote server
and compromise the valuable data there such as a database containing
credentials. In the case of ... . . . . . . . . .MATE attacks, on the other hand, the attackers
are the supposed end users of the software, and they target valuable
assets embedded in the program itself: cryptographic keys, proprietary
algorithms, or licence checks. No matter the specific attack, it is clear
that software needs to be protected to avoid serious economical damage.
It is thus important for those that design and develop software to keep
its security in mind.
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We cannot expect every software architect or developer to be a secu-
rity expert, knowing every possible way in which their software can be
attacked and every possible way to guard it. Neither can we expect every
company to hire security experts for all the software they develop, as this
would become too expensive. Next to that, humans are fallible creatures.
Programmers make mistakes, and almost all software has bugs in it.
Thus, while the software development process should be more mindful
of security, we can help the people involved by introducing security in
an automated, integrated manner.

The past five years I have worked at the Computer Systems Lab, in
a research group that focuses on system software. This is the software
that allows other software to execute: It performs tasks ranging from
creating program binaries out of separate source code files, to sorting and
triaging automatically filed bug reports for a certain piece of software. It
consists of numerous specialized tools continuously used by developers
and users, throughout the SDLC (Software Development Life Cycle),
mostly without them even realizing it. System software is the ideal
place to integrate tools that aim to improve programmer productivity by
automating some of their tasks. Over the years, our lab has performed
research at the system software level, with different goals: optimizing
programs for code size, extending high-level programming languages
with support for accelerators that are usually programmed at a lower
level, and, of course, transforming programs to protect them.

I performedmy research at the system software level, and focused on
protecting against arbitrary code execution and ... . . . . . . . . .MATE attacks. My aims
were improving existing protections, introducing new protections, and
improving support for protections to ease their adoption. Most of my
work on protectionswas at the binary or native level, directly transforming
the binary code of a program to protect it.

1.1 Contributions

This dissertation contains four chapters based on my research contribu-
tions. These contributions were implemented at different stages in the
... . . . . . . . .SDLC, with differing goals and attacks in mind. All but one of my re-
search contributions originate from the ASPIRE project. In this European
FP7 project various protections against ... . . . . . . . . .MATE attacks were developed.
It was important that these protections could easily be combined on the
same program, and the techniques (and the entire tool chain) were there-
fore designed with composability in mind. The protection techniques
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were also designed under the assumptions of the attack model agreed
upon by the ASPIRE consortium [115]. Next to the research chapters,
this dissertation also introduces the necessary background, and draws
conclusions. The remaining chapters are:

• Chapter 2 – Background provides the necessary background for
the rest of the dissertation.

• Chapter 3 – ∆Breakpad presents our extension of the Breakpad
crash-reporting system for diversified programs. Diversification
means every user has their own, diversified version of the pro-
gram. In the form of diversity we studied, all of the program
binaries distributed to users differ, making it harder for attackers
to scale up an attack against the program. Supporting all of these
diversified programs is not easy, however, which slows the adop-
tion of diversification. One issue is with crash-reporting systems,
which automate the generating and aggregation of crash reports.
Generating a crash report for a binary requires its debug infor-
mation. If this information is not included with the distributed
program binaries—which it often is not, for security reasons—it
has to be stored server-side. For diversified programs this becomes
harder, however, as every user has their own, separate version
of the program, for which the debug information would have to
be kept. We designed a solution to this problem, extending the
Google Breakpad crash-reporting system to create ∆Breakpad.
∆Breakpad works by diversifying programs and extending them
with information describing the applied diversifications. This then
allows Breakpad to correctly handle crash reports from diversified
programs.

This chapter is based on:
∆Breakpad: Diversified Binary Crash Reporting
Bert Abrath, Bart Coppens, Mohit Mishra, Jens Van den Broeck,
and Bjorn De Sutter
In IEEE Transactions on Dependable and Secure Computing, 2018
The seeds for this research lay in an internship by Mohit Mishra.
The initial design and implementation were lacking, however. To
improve upon these, I almost completely redesigned his work,
and re-implemented most of the diversifications and the Python
framework, leading to heavily improved results.
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• Chapter 4 – Tightly-Coupled Self-Debugging presents our self-
debugging protection technique. Debuggers are often used in
... . . . . . . . . .MATE attacks. Consequently, a program can be protected by trans-
forming a program in such a way that it cannot be debugged. As
only a single debugger can be attached to a process, the malicious
use of a debugger by attackers can be countered by having the
protected program debug itself. This protection is implemented by
embedding a debugger component in the program during its build
process, and automatically transforming the program through
a binary rewriter so that it depends on the debugger, meaning
the debugger cannot simply be removed. While self-debugging
implementations already exist, the methods through which they
make the program depend on the embedded debugger are inade-
quate. Our improved technique creates a tighter coupling between
the program and its debugger, thus making the technique less
vulnerable to automated attacks.

This chapter is based on:
Tightly-Coupled Self-Debugging Software Protection
Bert Abrath, Bart Coppens, Stijn Volckaert, JorisWijnant, and Bjorn
De Sutter
In Proceedings of the 6th Workshop on Software Security, Protection, and
Reverse Engineering, 2016
Self-debuggingwas developed in the context of the ASPIRE project.
I contributed to the first design, and guided the initial implementa-
tion by Joris Wijnant in his master’s thesis. Afterwards I enhanced
this design to allow more complex code fragments to be moved
to the mini-debugger, and to make the technique applicable to a
broader class of environments. To realize this enhanced design and
improve its robustness, I had to rework both the mini-debugger
and the implementation in the binary rewriter. I also performed
the evaluation.

• Chapter 5 – Native Code Mobility presents our code mobility
protection technique, which protects against ... . . . . . . . . . .MATE attacks. Code
mobility is an online protection technique where parts of the pro-
gram are downloaded at run time from a trusted server, making it
harder for attackers to analyze and tamper with the program. In
particular, this hinders static attacks, as only part of the program
is present in the binary. However, existing implementations of
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code mobility either do not operate on binary code, or do not
allow making only select parts of a program mobile, hindering
composability with other protections at the binary level. We
therefore present our own code mobility framework, implemented
at a binary level using a binary rewriter. Through source code
annotations, developers can specify which parts of the program
are to be made mobile. The framework then splits off the pieces
of native code associated with these annotations, and forms mo-
bile code blocks out of them. This allows for finer granularity
in the code blocks that are made mobile, and furthermore can
be built upon to combine other protections in a more powerful way.

This chapter is based on:
Software Protection with Code Mobility
Alessandro Cabutto, Paolo Falcarin, Bert Abrath, Bart Coppens,
and Bjorn De Sutter
In Proceedings of the 2nd ACM Workshop on Moving Target Defense,
2015
Code mobility was developed in the context of the ASPIRE project.
I designed the technique in cooperation with Alessandro Cabutto
from the University of East London. As for implementation and
evaluation, I worked on the client side, and Alessandro Cabutto
worked on the server side. Next to implementing the code trans-
formations in the binary rewriter, I also designed the format of the
exchanged mobile blocks.

• Chapter 6 – Native Code Renewability presents our renewability
framework, built on our code mobility technique. ... . . . . . . . . . .MATE attackers
have various tools at their disposal, and a broad range of attack vec-
tors through which they can achieve their goals. Each protection
technique only affects a small set of attack vectors, and applying
only a few will merely divert the attacker’s attention to the remain-
ing unprotected attack vectors. Thus, multiple techniques need to
be combined to ensure all these possible paths-of-least-resistance
are hardened. Furthermore, it takes time for attackers to identify
successful attack vectors, and subsequently use these to set up and
scale up attacks. Developing new attacks is an iterative process,
and repeatability is thus important: Attackers expect repeated
program executions to be sufficiently similar that their attacks keep
working, both during development and after distribution of these
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attacks. If the target program changes while an attack is being
developed, attackers have to adapt their helper scripts and perhaps
re-think their approach or re-identify attack vectors. If protections
can be diversified across user instances, as well as across time,
this will both increase the attackers’ effort in developing an attack,
and decrease the window of opportunity during which this attack
works and generates income for them. Our framework enables the
renewing (i.e., updating) of parts of a program and the protections
embedded in it, through the downloading of diversified code
blocks. By continually updating not only the valuable assets the
attacker is after, but also the protections defending it, we make
dynamic attacks harder.

This chapter is based on:
Code Renewability for Native Software Protection
Bert Abrath, Bart Coppens, Jens Van den Broeck, Brecht Wyseur,
Alessandro Cabutto, Paolo Falcarin, and Bjorn De Sutter
Submitted to Transactions on Privacy and Security, 2019
The renewability framework was developed in the context of the
ASPIRE project, and as such employs and combines various AS-
PIRE protections. I built upon the code mobility technique, and
made the necessary adaptations to enable the renewal of specific
protections. In particular, I supervised Dimitri Vernemmen’s mas-
ter’s thesis on semantically diversified mobile code. I guided its
design and implemented supporting functionality in the binary
rewriter. Afterwards I extended the design and made the imple-
mentation more robust. I also performed the experimental valida-
tion.

• Chapter 7 – Conclusions and Future Work draws conclusions
from the preceding chapters and describes some future work.
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My research also resulted in other publications that are not included
in this dissertation. These publications are:

• Obfuscating Windows DLLs
Bert Abrath, Bart Coppens, Stijn Volckaert, and Bjorn De Sutter
In Proceedings of the 1st International Workshop on Software Protection,
2015

• Reactive Attestation: Automatic Detection and Reaction to Soft-
ware Tampering Attacks
Alessio Viticchié, Cataldo Basile, Andrea Avancini, Mariano Cec-
cato, Bert Abrath, and Bart Coppens
In Proceedings of the 2016 ACM Workshop on Software PROtection,
2016

• Self-Debugging
Bert Abrath, Stijn Volckaert, and Bjorn De Sutter
European Patent Application EP3330859A1, 2018
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Chapter 2

Background

This chapter provides the necessary background for the rest of the dis-
sertation. Section 2.1 explains the concept and applications of system
software throughout the ... . . . . . . . .SDLC. The attack models and existing defense
techniques relevant to the dissertation are described in Section 2.2 and
Section 2.3, respectively.

2.1 System Software and the ... . . . . . . . . .SDLC

The SDLC (Software Development Life Cycle) spans the entire life of soft-
ware from its conception through implementation, to release, and sup-
port. It is commonly divided into distinct phases to improve productivity.
Phases such as design, implementation, installation, and maintenance,
differ in their focus and in the roles of the people involved. Here, we
will not so much focus on the different phases and their order, but rather
on the aspects of software development that happen behind the scenes,
and on the tools that improve the productivity of today’s developers.

When developing software, programmers write source code in a
programming language of their choice. In doing so they rely heavily on
functionality already implemented by others, in the form of libraries.
This can be the general functionality provided by a programming lan-
guage’s standard library, or more specialized functionality provided by
third-party libraries. The resulting source code is then turned into a
binary: either a program executable, or a library implementing functionality
on which other executables or libraries depend. This operation of turn-
ing source code into binaries is nowadays much obscured and glanced
over, but is an example of the application of system software, a class of
software that is paramount to this dissertation.
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System software is the software that allows other software to execute.
It provides the interface between the hardware and user programs, and
thus also includes a computer’sOS (Operating System). In this section we
focus on the system software that is continuously used throughout the
... . . . . . . . .SDLC, by developers and users. More specifically, we cover the special-
ized tools used under the hood when building, executing, debugging,
and maintaining software. We limit our scope to software consisting of
native code, and disregard software that is distributed in the form of
source code or bytecode.

2.1.1 Building Software

The first step in building a piece of software is translating its source
code into binary code that a processor can execute. The tool doing this
translation is the compiler. It translates every separate source file into
an object file, containing machine code, also known as binary or native
code. In the second step, another tool called the linker will then combine
these object files into the final output, which can be an executable or a
dynamic library [77]. These two types of binary differ in their purpose:
An executable is used to launch a program, while a dynamic library is a
collection of functionality that an executable or dynamic library can be
linked to and use at run time.

There are thus two types of linking: the static linking of object files
and libraries into binaries which happens when building software, more
specifically at link time; and the dynamic linking of an executable with
the dynamic libraries it depends on, which happens during execution,
i.e., at run time. Dynamic linking has some practical advantages: The
functionality contained in dynamic libraries can be used by multiple
executables, which saves both storage andmemory space on themachine.
It also has some security disadvantages. Splitting a program up into
multiple, self-contained binaries means these individual binaries contain
meta-information that makes them easier for attackers to comprehend
and interfere with.

Compilation

A compiler takes as input a source file written in a certain programming
language, and outputs an object file containing binary code for a certain
target. Targets are a combination of: an ISA (Instruction Set Architecture),
such as x86 or ARM; an ABI (Application Binary Interface), which defines
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how data structures or functions are accessed in binary code; and a
platform, such as Windows, GNU/Linux, Android, etc. To facilitate this,
modern compilers generally consist of three stages: a front end, a middle
end, and a back end. The front end is specific to a certain programming
language; it verifies the syntax and semantics of the source code, and
translates it into an IR (Intermediate Representation). The middle end
takes this ... .IR as input and performs target-independent analyses and
transformations on it. These transformations might be optimizations
(e.g., function inlining, and removing code that can never be executed),
or transformations that intend to confer some kind of property on the
code, such as making it more secure. After these transformations, the
middle end again outputs the transformed ....IR. The back end is target-
specific; it takes the ... .IR as input, and after some target-specific analyses
and transformations it outputs an object file containing binary code.
A compiler can then have many different front ends and back ends,
but a single middle end that implements the bulk of its analyses and
transformations, providing its benefits to all front and back ends.

Object Files

Whereas a source file contains functions and variables, an object file
contains sections and symbols. Symbols are usually the names of the
functions and variables defined in an object file, and can be referred to
from other object files. An object file consists of headers describing its
sections, their types, sizes, and offsets within the file [77]. Some section
types of interest are:

• .text section: containing binary code, instructions for a processor

• .data section: containing data such as global variables, and can
both be read and written

• .rodata section: containing data just like the .data section, except
that it is read-only

• .bss section: containing zero-initialized data

A .bss section is not actually present in an object file. As its contents
are known a priori, only its size is stored in the object file.
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A collection of (usually related) object files can then be gathered into
a static library, also known as an archive. This forms a library of precom-
piled functionality that can be used in building future binaries. This
functionality can then easily be included when building new binaries,
without requiring further compilation.

Static Linking

A linker is given a number of object files and archives (containing other
object files) that it combines into a binary. These object files contain
references to each other through symbols. For example, if a function
from object_a.o calls the function fun_B contained in object_b.o, this
results in a reference from object_a.o to the fun_B symbol, defined in
object_b.o. The linking process consists of three steps: determining
all object files to link, merging their sections, and performing symbol
resolution [77].

From the object files and archives passed to it as an argument, the
linker determines all of the object files it needs to link. It starts from the
passed object files, and adds object files from the passed archives that
define required symbols. This is an iterative process that ends when
there are no undefined symbols left. Subsequently it merges the sections
by taking the identically named sections from all object files andmerging
them into one section with the same name. For example, all the separate
.text sections are merged into one large .text section in the binary.
Finally, symbols are resolved by calculating their address in the final
binary, and patching/rewriting any instructions that refer to them to use
this address.

The linker is the only tool that has an overview of the entire binary
that is being built. This means it can do whole-program analysis, al-
lowing for more aggressive optimizations and other transformations.
The past few years, LTO (Link-Time Optimization) has been gaining trac-
tion [49, 82]. In a common implementation of ... . . . . .LTO, the compiler outputs
object files containing not native code, but ... .IR. The linker then again
combines these object files, but turns the resulting ... .IR binary over to a
Link Time Optimizer. This is usually the same compiler that generated
the object files, invoked in a different way. Possessing more information
and less constraints as in its original run, the compiler further optimizes
the ... .IR and has a target-specific back end output the final binary.

Another form of ... . . . . . .LTO, however, is link-time rewriting. Here, a binary
being linked is rewritten by a tool called a link-time rewriter. Just like
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a compiler, this link-time rewriter can analyze the binary code and ap-
ply transformations with different goals: optimizations for code size,
execution speed, or to protect the program. Whereas the previously
described ... . . . . .LTO operates directly on ... .IR generated from source code, a
link-time rewriter starts from binary code produced by a compiler. This
means a link-time rewriter is working with less information about the
intended behavior of the code, and has to be be more conservative in its
analyses and transformations.

One example of a link-time rewriting framework isDiablo, which was
used extensively in my research [104]. It was originally developed for
optimization, but applications for many other domains were built on top
of this framework. Diablo emulates the original linking step, starting
from the binary, object files, and the decisionsmade by the original linker.
Starting from the object files and emulating the linker process allows
Diablo to build a more in-depth representation of the binary and the
dependencies between its constituent object files, improving its analytical
power over post-link-time rewriters that only start from the binary.

2.1.2 Executing Software

When a program is launched, execution does not just start at its main
function. There are several steps that happen before—and after—control
is turned over to the actual program code. Depending on the ... . .OS and
the exact manner of invocation, either a new process is created for the
program, or an old one is replaced. Subsequently, the program is loaded
into the address space of this process, and any dynamic linking still to be
done is performed. Finally, the actual program execution begins. System
software plays a supporting role in these steps.

Loading

A binary is loaded into an address space by the loader. The entire binary
is mapped into the address space, with its sections being mapped onto
pages with the right permissions. For example, a page associated with
the .text section is both readable and executable, a page associated with
the .rodata section is only readable. Although no space was allocated
for the .bss section in the binary, the pages required for its size are now
allocated, and subsequently zeroed out.
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Dynamic Linking

It is possible for an executable not to depend on any dynamic libraries, in
which case it is fully statically linked, and we call it a static executable. For
a static executable, simply loading it into the address space is sufficient
to prepare it for execution. Dynamic executables, however, do depend on
dynamic libraries, and still require dynamic linking at run time. This
dynamic linking is usually also performed by the loader. In this context
of multiple binaries being loaded into the same address space, the loaded
binaries are also known as modules.

After a dynamic executable has been loaded, the loader determines
the dynamic libraries upon which it depends, and loads these. It iter-
atively loads more dynamic libraries—not loading any specific library
more than once—until all dependencies have been satisfied. Subse-
quently, it resolves the specific symbols these modules require, or import,
from each other. For every module, the run-time addresses of these
imported symbols are calculated, and the associated entries in a global
table are patched, so that these symbols can be accessed at run time. This
symbol resolution does not have to happen when the binary is loaded.
To improve the speed of program startup, this process can happen in a
lazy manner, with every symbol only being resolved the first time it is
actually used.

Program Execution

After a binary has been loaded and its dependencies have been resolved,
actual code execution can begin. For both executables and dynamic
libraries, the first thing to be executed are their initialization routines. As
their name suggests, these are functions that contain initialization code,
such as C++ static constructors, for example. For executables, the main()
function is then invoked, and the main program logic is executed. After
main() returns—or the program exits, because of a bug or otherwise—
the finalization routines of the modules are run, performing potential
cleanup. Finally, the process ends, and its exit code is given to the kernel.

It is possible for dynamic libraries to be loaded and unloaded while
the program is already executing. In these cases, the corresponding
initialization and finalization routines are invoked as well.
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2.1.3 Debugging Software

The goal of debugging a piece of software is finding the programming
errors or bugs in it, so that they can be fixed. In order to do this, the
program is usually executed in a controlled environment, under super-
vision of a tool called a debugger. Conversely, the debugged program is
also known as the debuggee. The debugger can inspect and modify the
debuggee’s state at every moment, which allows one to locate the points
where program behavior deviates from the programmer’s intentions,
and thus to find bugs.

Through its control over the program, the debugger can observe
the execution of binary instructions, but often it is more interesting to
know what source code these actually represent. When a user places a
breakpoint at a certain source line, the debugger has to insert the actual
breakpoint at the associated location in the binary code. To enable this,
the debugger requires a mapping between binary code and source code,
which is known as debug information. In this section we describe the work-
ings of a debugger, the ptraceAPI (Application Programming Interface)
which is used on Linux to debug programs, and debug information.

Debugger Operation

A debugger process has complete control over the processes it debugs.
The debugger first has to request this privilege from the kernel, by at-
tempting to attach to the target process. It is possible to attach to every
running process, if the kernel allows it. Although there are instances
where debugging an already running process is useful—such as inspect-
ing the state of a server daemon—usually, the debugger itself starts the
program it wants to debug. In this case typically no extra permissions are
required to attach to the process, and the debugger controls the program
right from the start.

Once attached to a process, the debugger can control its execution:
stopping or continuing the process, or letting it run until a certain point in
the execution is reached, by placing a breakpoint. When the debuggee’s
execution is stopped, the debugger can also read or change its state: It can
read or write program variables, specific registers, and specific memory
addresses. It can even rewrite the instructions being executed (which
is a common method of inserting breakpoints). All of the debuggee’s
registers can be changed, including the register holding the PC (Program
Counter). This means the debugger can decide at will which code is
executed.
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One specific way of inspecting the program’s state is through its stack
trace: a list of the active stack frames at a certain moment. This list can be
created by unwinding the stack: determining the start and end addresses
of the current stack frame, using its registers to determine the start and
end of the previous stack frame, and so on. Debug information makes
this process more reliable, but is no strict requirement. It can be used to
make the stack trace human-readable though: Every stack frame has an
associated function, whose name and location of variables can be found
using debug information. When debugging a program a developer can
then, for example, place a breakpoint to stop the process at a certain
function invocation, and investigate what function invoked it (and what
function invoked this function, and so on).

After it has fulfilled its job, the debugger can surrender its hold over
the debuggee process, and detach from it. The debuggee will then con-
tinue executing normally, undebugged. If this is not what the debugger
wants, it can always just end the debuggee process instead of detaching
from it.

ptrace – Linux Debugging ... . . . . .API

To support debugging, an ... . . .OS has to provide an ... . . . .API that allows for all
of the operations described in the previous section. For Linux, this is
the ptrace . . . . . . .API. This ... . . . .API consists of the ptrace call, the first argument
of which denotes the requested action. A debugger can only request an
action when the target process is prepared for this, meaning roughly that
it must be in a stopped state. The only exceptions to this are attaching
actions, and PTRACE_INTERRUPT, whose express purpose is putting the
debugged process into that stopped state. Some of the possible actions
are:

• PTRACE_ATTACH: attach to a process, and stop it

• PTRACE_SEIZE: updated version of PTRACE_ATTACH, also attaches
to a process but does not stop it

• PTRACE_TRACEME: used by a process to request to be debugged by
its parent process

• PTRACE_DETACH: detach from a process, and continue it

• PTRACE_INTERRUPT: stop a debugged process; this can only be used
when the process was attached to using PTRACE_SEIZE
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• PTRACE_CONT: restart a debugged process that is stopped

• PTRACE_GETREGS: get the register contents of a debugged process

• PTRACE_SETREGS: set the register contents of a debugged process

• PTRACE_PEEKDATA: read a word of memory from a debugged pro-
cess

• PTRACE_POKEDATA: write a word of memory from a debugged pro-
cess

Debug Information

Debug information provides a mapping between source code and binary
code, for both functions and variables. For functions a mapping is pro-
vided between source lines and the binary instructions that are actually
generated from these. Likewise, for variables a mapping is generated
between their names in the source code and their location during exe-
cution: for global and static variables this is their address in a section,
for variables local to a function this is their offset in that function’s stack
frame.

Aggressive compiler optimizations can affect the precision of debug
information, as they make it harder to find the right connection between
the original source code and the resulting binary code. Therefore, when
building binaries for debug purposes, these optimizations are generally
disabled.

The debug information for a binary is usually a part of the binary
itself. It is encoded in a certain format, and then added to the binary
in debug sections. When binaries are delivered to their end users, they
do not necessarily include this debug information, however. Not only
do debug sections make the binary larger, but there are also security
considerations. A binary’s debug information gives a lot of insight into
how the binary works, and is thus rather valuable to potential attackers.

2.1.4 Maintaining Software

After software has been released and users run it on their system, it is
maintained through the release of updates. Among others, these updates
contain fixes for bugs that have been found by users running it in the
real world, outside of mere testing environments. Users might file a
bug report, explaining the kind of a bug it is and how to reproduce it.
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Filing bug reports can require some effort and programming knowledge
however. An alternative therefore is to automate this process, using an
instance of system software: a crash-reporting system. We first introduce
the general workings of crash-reporting systems, and then go into detail
with a specific example.

Crash-Reporting Systems

Implementations differ, but we consider crash-reporting systems consist-
ing of two parts: a client library included in the binary, and a centralized
server. When a binary crashes, the client library embedded in it creates a
crash report, and sends it to the crash-reporting server. This server then
aggregates all the crash reports it receives, and can do some analysis on
them such as filtering duplicates, triaging bugs based on their severity,
etc. In such a system, crash reports contain things such as version in-
formation, the type of the crash, and stack traces (already described in
Section 2.1.3).

Reliably unwinding a crashed process’ stack to reconstruct a stack
trace requires access to the binary’s debug information. Even more so
when a human-readable stack trace is needed. Therefore, if a crash
report containing stack traces is to be sent, the binary distributed to users
has to contain debug information. Debug information is valuable to
potential attackers of the software, however, and takes up a lot of space
in the binary. For these reasons, many binaries are distributed without
it. Consequently, when these binaries crash, the client library cannot
generate and send a crash report. Another option then is to have the
server reconstruct the stack traces and generate the crash report. Upon a
crash, the client library takes a snapshot of the crashed process’ relevant
state and sends this to the server. The crash-reporting server—which
does possess the binary’s debug information—can then use this snapshot
to create the stack traces and the actual crash report. The crashed process’
snapshot typically contains the CPU context and stack contents for every
thread, as well as a list of the modules loaded in the process (executable
and shared libraries).

Google Breakpad

One specific instance of a crash-reporting system is Google Breakpad [54],
which was used in my research. Its operation involving three parties is
visualized in Figure 2.1. When the program crashes on a user’s system,
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Figure 2.1: Overview of Google’s Breakpad tools for crash collection (redrawn
after the Breakpad website [54])

the embedded Breakpad client library creates a dump of the process state,
called a minidump. This minidump is then sent to the crash-reporting
server, also known as a crash collector server. On that server, a tool then
combines the minidump information with the debug information stored
in a symbol file on the server. The tool generates a stack trace, and the
resulting crash report is most often first analyzed and classified auto-
matically. If no equivalent reports are found in a database of previously
received reports, the vendor’s developers are notified that a previously
unknown bug or previously unknown trigger has been identified, at
which point they can start to study the report manually.
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2.2 Attack Models

Before we can talk about defenses, we have to discuss what is being de-
fended, and against who or what. The field of software security is broad,
featuring a great many different types of attackers, differing in their
goals, methods, capabilities, and targets. One example of an attacker
would be a so-called script kiddie cheating in a first-person shooter game,
using an exploit developed by a more skilled hacker to make himself
invulnerable to other player’s shots. Another example would be pro-
fessional hackers motivated by profit, seeking to compromise a public
server with valuable data they can ransom or steal. A final example
would be a government agency engaged in cyberwarfare, infiltrating the
computer systems of a foreign government’s military facility with the
goal of sabotage. The motives and capabilities of the attackers in these
examples are clearly different, and so are the environments in which the
attacks take place: while attacking a public server usually happens over
the internet, the script kiddie might be able to cheat simply by tampering
with the local version of the game. It is impossible for one defensive
technique to counter all of these possible attacks, and new defenses are
thus best developed with a specific attack model in mind.

An attack model describes the asset under attack, the vector through
which the attack occurs, and the capabilities of the attackers. In this
section we describe two attack models, namely those of arbitrary code
execution and . . . . . . . . . . . . .MATE attacks. These models cover only a small portion of
the attacks possible, but are the ones that are central to this dissertation.
In order to more clearly define our attack models, we first lay out some
security principles.

2.2.1 Security Principles

Information is valuable. While this has always been the case, the advent
of multi-user and networked computer systems forced us to reason in
theoretical terms about information security: where and how it is stored,
who can access it, and so on. An important concept in information secu-
rity is the CIA triangle, based on three characteristics that give value to
information: confidentiality, integrity, and availability [111]. Although
the CIA triangle is somewhat outdated, these characteristics are still rele-
vant to us. Confidentiality means the information can only be accessed by
authorized individuals. It is thus protected from disclosure—accidental
or otherwise—to unauthorized individuals. Integrity means the infor-
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mation is whole, complete, and uncorrupted. The integrity of a piece of
information is compromised when someone modifies it without autho-
rization. Finally, availability means authorized individuals can access the
information when required.

On a multi-user computer system these principles are enforced
through access control: Users are authenticated before logging onto the
system, and are then only authorized by the system to access those
resources they are permitted to [111]. Users are limited in their per-
missions: They can only read or write certain files, or start up certain
programs. Usually, when a program is run on behalf of a user, its per-
missions are those of the user. It can only access the same files the user
would be allowed to. The administrator or root account is an exception:
It has more privileges than other accounts, and the computer system
will allow it to access whatever it wants.

2.2.2 Arbitrary Code Execution

In this attack model, the attackers want to compromise the security
characteristics of an asset, without authorization from the computer
system that holds the asset. They might want to gain access to a database
containing credentials, compromising its confidentiality; override soft-
ware providing keyless access to a car, compromising its integrity; or
take down a competitor’s website, compromising its availability. The
attackers thus lack authorization to access their target assets, but can get
around this by taking control of a process that does have the required
authorization. The name of this attack model refers to the method the
attackers use to perform the takeover: arbitrary code execution. The attack-
ers exploit a vulnerability in a program, and so gain the ability to execute
whatever code they choose in the exploited process, with the permis-
sions of the victim process. In effect, the attackers are expanding their
permissions without authorization. When this happens locally with a
higher-privileged process with more permissions being taken over, we
speak of privilege escalation. When arbitrary code execution is achieved
in a process on a remote system, it is known as remote code execution.

To gain arbitrary code execution in a target process, an attacker first
has to find a vulnerability to exploit: either a flaw in the program’s design,
or a bug in its implementation [111]. In this dissertation we only provide
solutions for the case where the attack occurs through the exploitation
of a bug. Once a bug has been found, the attacker crafts an input for the
process that triggers the bug and corrupts parts of the process state. Con-
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trol over the process is commonly taken over by specifically corrupting
control data—such as function pointers, return addresses, the ... . . .PC—with
attacker-chosen values. There are many different types of bugs to exploit
and control data to target, but these are beyond our scope.

2.2.3 ... . . . . . . . . . .MATE Attacks

In this attack model, just like in the previous one, attackers want to com-
promise the security characteristics of an asset. In this case, however, the
assets are embedded in a program the attackers are authorized to run, as
they are its end users [88]. The attackers might want to compromise the
confidentiality of cryptographic keys or proprietary algorithms embed-
ded in the program, or compromise the integrity of digital watermarks or
licence checks embedded in the program. The program wants to control
access to these embedded assets, denying unauthorized access. It is on
its own, however. Unlike in the previous attack model, the computer
system will not stand in the way of the attackers reaching their goals.
It is assumed to be owned or controlled by the attackers, and indeed,
can be considered complicit. As these attacks are assumed to take place
by users on their own systems, they are known as ... . . . . . . . . . . . . . . . . . . . . . . . . . . . .Man-At-The-End at-
tacks. There are two parts to MATE (Man-At-The-End) attacks: analysis
and tampering, and their targets are compromising confidentiality and
integrity, respectively.

Analysis is performed through observing a program’s execution or
inspecting its binary, with the aim of gaining an understanding and/or
construct a representation of the program at a higher abstraction level
than binary code. Analyzing anddeconstructing an object—in this case, a
program binary—to reveal its design is also known as reverse engineering.
If the goal of an attack is to reconstruct an algorithm, analysis in itself
might be enough to succeed.

Tampering works by making a program’s execution deviate from its
intended behavior, towards the behavior the attacker desires. The goal
might be to avoid the execution of a licence check, to force a protected
algorithm to execute out of context, or to remove a digital watermark.

Althoughwe present them separately, differing in goals andmethods,
in reality analysis and tampering are used concurrently, and reinforce
each other [16]. An attacker could attempt to observe program execution
but be obstructed by some protection mechanism, analyze and tamper
with the binary to remove the mechanism, attempt observing again, and
so on.
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Analysis

We consider two types of program analysis: static analysis consists of
inspecting the binary code, analyzing it and gathering information for all
executions; dynamic analysis consists of executing the program for a set of
concrete inputs, analyzing this execution and collecting information from
it [88]. A third, intermediary type of analysis is symbolic executionwhere
the program is symbolically executed for a set of abstract inputs [71].
Symbolic execution is not considered in this dissertation. We present
static and dynamic analysis separately, but the reality is more hybrid,
with both being used and their results feeding into each other.

Static analysis entails converting the program’s binary code into ac-
tual instructions through disassembly, and then structuring these instruc-
tions in a higher-level representation called a CFG (Control Flow Graph).
To perform these steps, attackers can rely on tools such as IDA Pro [36]
or Radare2 [93]. The resulting representation can then be used to better
understand the program’s workings, or even to attempt to decompile
it back into source code [21]. Any debug information included in the
binary comes in handy during analysis, giving away which functions
start where in the binary, for example. This goes more broadly for any
meta-information present in the binary, such as the symbolic information
required for dynamic linking.

Dynamic analysis, on the other hand, consists of executing a program
on concrete inputs and observing its execution [6]. This can be done by
executing the program under supervision of a debugger, executing it in
an emulated environment, or using binary instrumentation [83]. During
execution, special events such as library calls and system calls can be
logged for later analysis. If this is not enough, a record can be kept of
all executed instructions to form a complete execution trace. At different
moments during execution the entire memory of the process can also be
dumped. All of these results are precise for those inputs on which the
program was executed and analyzed, but not for all other inputs, and
thus far from complete.

Tampering

Tampering can be done in both a static and a dynamic manner. Static
tampering comes down to modifying the program binary, and changing
its instructions or data. Dynamic tampering, on the other hand, comes
down to modifying a process’ state. This can again consist of modifying
instructions, but also of modifying important data structures, registers,
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and processor flags—or simply setting the ... . . .PC where an attacker wants
it to go. All of these examples are swiftly accomplished with a debugger,
and it is thus no great surprise that debuggers are often used in dynamic
tampering. Another method of dynamic tampering is hooking: inter-
cepting function calls. The arguments of these calls can be logged for
analysis, or modified. Hooking usually happens through the injection
of a shared library into the process. All of the shared library’s code is
injected into process, and its initialization routines are executed. During
initialization, the shared library can rewrite the instructions on some
of the program’s execution paths, and place redirects or hooks on them
to ensure the shared library’s injected code is invoked whenever these
execution paths run. The shared library can then modify or log the
arguments, and complete its task by returning control flow back to its
original path.

2.3 Existing Defenses

Just like with attacks, there exists a great diversity in defensive tech-
niques. Amongst others, they differ in their assumed attack models,
effectiveness, and performance overhead. These techniques are applied
in an automated manner by tools. There is thus also variation in where
in the ... . . . . . . . .SDLC they are applied, and whether they are integrated into other
system software, or implemented using specialized tools. In this section
we only consider techniques defending against arbitrary code execution
and .... . . . . . . . . .MATE attacks, and focus on those relevant to the rest of the disser-
tation. This is by no means an exhaustive list, nor are these techniques
usually deployed in isolation. When one attack vector is obstructed,
the other attack vectors become more promising avenues for attackers.
Therefore, various defensive techniques targeting different attack vectors
are typically composed to form a strong, broad defense.

2.3.1 Obfuscation: Protecting Confidentiality

. . . . . . . . . . . .MATE attackers often want to compromise the confidentiality of a bi-
nary, and understand how it works at a higher level. Making it harder to
comprehend a program just from its binary code or execution is there-
fore a valid approach to obstructing ... . . . . . . . . . .MATE attackers, and preserving
confidentiality. We call this approach obfuscation. The idea is to take the
program, and to transform it in such a way as to increase its apparent
complexity, while the observable I/O (Input/Output) behavior of the
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program remains the same. It is thus harder for an attacker to compre-
hend the program, but it still works as intended. As a side effect there
might be a performance overhead: The program might run slower or
require more memory.

Both code and data can be obfuscated, but here we will focus on
code obfuscation. Many different code obfuscation techniques have been
proposed throughout the years, defending against both static and dy-
namic analysis. Static obfuscations transform the program code prior to
execution, while dynamic obfuscations on the other hand transform the
program code while it is running.

Static Obfuscation

Static obfuscation usually consists of making the ... . . . . .CFG more complex,
and thus harder to reconstruct and comprehend. Two examples of such
control flow obfuscations are opaque predicates [25] and control flow
flattening [109]. Opaque predicates introduces new branch statements,
that branch on a value that is known to be constant to an obfuscator yet
hard to evaluate statically. Control flow flattening transforms a function’s
... . . . . . .CFG from a logical, informative structure to a flat structure where every
basic block returns to a function-wide switch block.

Program code can be obfuscated at many points during the ... . . . . . . . .SDLC,
before it is actually run. We describe obfuscating transformations being
applied on three levels: source code, ... .IR code, and binary code. These
three levels differ in their abstraction level, and thus also in what kinds
of obfuscations are possible. Some obfuscations can be implemented at
every level, such as opaque predicates and control flow flattening.

The source code can itself be directly obfuscated by a source-to-source
rewriter. An example of this is the Tigress obfuscator [24], which op-
erates on C code. Operating directly on source code has some disad-
vantages though: for one, it requires the obfuscating tool to have access
to the source code, which might be an issue for some developers; for
another, the tool only supports obfuscating specific programming lan-
guages. On top of that, when the compiler is handed obfuscated source
code it will start optimizing it, in the process removing any obfuscations
it sees through.

Operating on ... .IR code entails implementing the obfuscations in a
pass in the compiler’s middle end, in effect turning the compiler into an
obfuscator. After running its optimization passes on the ... .IR code, the
compiler can transform the code further using the obfuscation passes.
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When implemented this way, obfuscation is supported for all program-
ming languages the compiler supports. An example of this approach is
Obfuscator-LLVM [66].

It is also possible to implement obfuscations on the lowest level of
abstraction commonly available, that is, on binary code. This can be done
either in the compiler back end—ideally after any back-end optimization
passes—or by a binary rewriter, operating directly on the binary code
emitted by a compiler. No source code is then required, but only specific
target machines are supported. Some obfuscation techniques can only
be implemented at binary level, such as instruction set randomization
schemes, also known as emulator-based protection. Here, native binary
code is replaced with custom, diversified bytecode that is interpreted or
JIT-compiled by an embedded virtual machine or interpreter [61].

The freedom available at binary level also allows for techniques
whose aim is not purely making the program harder to comprehend,
but instead confuse the tools the attackers use. Linn et al. proposed a
tool for inflating binary code with redundant and garbage instructions
to defeat disassemblers [78]. These garbage instructions will never be
executed and thus have no effect on the actual execution, but can confuse
disassemblers and result in them disassembling incorrect code.

Dynamic Obfuscation

Dynamic obfuscation techniques work by changing the program—both
its code and the execution path taken—while it is running. One method
is using self-modifying code, where the binary code rewrites itself at run
time [34, 69]. Another method is for the program binary to simply
store a part of its code in an compressed (or even encrypted) form,
only to decompress it at run time. This technique, known as packing,
is often used by malware authors whose malicious code will only be
unpacked and observable while the program is executing [12]. A more
sophisticated version of these techniqueswas developed byAucsmith [4].
His technique breaks a binary program into individually encrypted
segments, so that the hash value of a block is the secret key for decrypting
the next block; if the program was altered the hash value is changed
and then the next block cannot be decrypted properly and the program
cannot continue to run; in this case finding the first key allows recovering
the full chain of keys.

All of the previous techniques have in common that the code to
be executed still has to come from somewhere inside the binary. An
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alternative to this approach is to remove a part of the code from the
program and store it at a secure server, to be downloaded only when
needed. The code is removed at some point during the ... . . . . . . . .SDLC before the
binary is delivered to end users, and replaced with stubs that request its
download. It is then impossible to analyzed this code statically, as it is
not even present in the binary. This approach is known as code mobility
and has been implemented in different ways by both Collberg et al. [27]
and Falcarin et al. [40].

2.3.2 Tamperproofing: Protecting Integrity

Another common goal of ... . . . . . . . . .MATE attackers is to compromise a program’s
integrity, subverting the program—or parts of it—tomake it work to their
advantage. Developers on the other hand want their program’s integrity
to remain intact, and have it execute as they intended. This is the goal of
tamperproofing. To protect against illicit modifications, anti-tampering
approaches are utilized. Methods exist that directly attempt to prevent
tampering, such as instruction set randomization [61]. Here, however,
we focus on methods that detect when code has been tampered with and
react by stopping or delaying program execution. Such tamper-resistant
software typically uses built-in integrity checks to detect code tampering.
Some examples are: computing a hash over the code being executed [17],
checking that the flow of control through the program confirms to the
expected flow [18], or checking that functions produce the expected
outputs for chosen inputs [62].

While detection and reaction are often implemented locally, they can
also include a remote component. Tamper detection can be extended
with a trusted server to create remote attestation [23]. The trusted server
then periodically requests attestation of parts of the program, and verifies
the proofs produced by the program. The reaction to tampering being
detected can also be remote. For example, if the program requests data
from an application server, after tamper detection the server can decide to
refuse or increasingly delay any requests made by the tampered program.

A lastmethod of tamperproofing is through code splitting techniques:
These split security-sensitive parts off from client-side programs, and
transfer them to be executed on secure servers instead [15]. These tech-
niques have been combined with remote attestation: When remote at-
testation detects tampering, the server executing the split-off part of the
program is notified and stops serving the client [105].
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2.3.3 Anti-Debugging

Debuggers are often used by ... . . . . . . . . .MATE attackers, for both dynamic analysis
and tampering. One method of protecting against attackers is thus anti-
debugging: incorporating mechanisms into the program, aimed specifi-
cally at preventing program execution with a debugger attached.

A myriad of simple anti-debugging techniques—most of which are
hacks really—consist of dynamic checks to query the run-time environ-
ment for signs of active debugging [43, 84, 88, 97]. If such signs are
detected, the program can shut down or degrade its execution. These
techniques do not provide strong protection, however; many counter-
techniques (i.e., debugger hacks) have been proposed to thwart the
checks [13, 44, 84, 85].

Instead of simply checking whether a debugger is attached, it might
be better to prevent a debugger from attaching at all. All major ... . . . . .OSs
(Windows, GNU/Linux, Android, OS X, ...) support only one debug-
ger process per debuggee process. On top of that, hardware support
for debugging (such as debug registers and hardware breakpoints) is
designed for one debugger only (even though they might also be useful
beyond that limitation). Investing in the development of effective and
efficient ... . .OS support for multiple concurrent debuggers per debuggee is
for the time being considered infeasible for most attackers. With these
... . . .OS limitations in mind, self-debugging has been proposed as stronger,
more complex anti-debugging technique [65, 95]. This technique works
by occupying the single available debugger seat with a custom “debug-
ger” that is launched by the protected program itself, offers no useful
debugging capabilities, and cannot trivially be replaced by an attacker’s
own true debugger.

One method of ensuring the custom self-debugger cannot sim-
ply be detached and replaced by another debugger is provided by
Nanomites [42]. Here, control flow transfers in the program are replaced
by exception-inducing instructions (typically breakpoint instructions).
The self-debugger is injected into the program during its build, and at
program launch it is launched as well, after which it attaches itself to
the program’s process. Whenever an exception is then thrown, the self-
debugger intervenes and implements the original control flow transfer
by transferring control to the original continuation point in the program.
If the debugger is detached to make room for an attacker’s debugger, the
program itself lacks the necessary control flow and can hence no longer
be traced or debugged live.
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2.3.4 Diversity

Awell-studied problem in the field of security is the monoculture of soft-
ware [22, 45]. When a program is released, the same binary is distributed
to all users of the software, and every user then runs the same program
binary. This means that when an attack is developed that works on one
user’s instance of the software, it is very likely to work against other users’
instances. One might expect it to immediately work against all running
instances, but although the distributed binaries are all the same, the
associated processes running on all the different users’ machines differ.
They run in different environments, and might be configured differently,
leading to differences in their memory layout. Depending on the attack,
these differences might be substantial enough to make the attack fail
on a number of instances, while it succeeds on all the others. The basic
premise of diversity is to make all running instances of a program differ
sufficiently from each other, and thus drastically decrease the probability
of an attack developed on one instance succeeding on another instance.

When defending against arbitrary code execution, diversity provides
a probabilistic defense: The more entropy is added to a program, the
lower the likelihood of the attack succeeding. If “enough” entropy is
added, the probability of success is—for all intents and purposes—zero.
Attackers can overcome the added entropy through information leaks
from the program, however. Similarly, diversity can provide added
protection against ... . . . . . . . . .MATE attacks: It introduces the need for attackers
to customize their attack for every instance, forcing them to redo their
analyses or adapt their scripts. Put in economic terms, if .. . . . . . . . . . .MATE attackers
have to putmore effort into scaling up their attacks, their expected profits
will be lowered.

One method of automatically increasing the diversity of running
instances is ASLR (Address Space Layout Randomization), where the
program binary—and any libraries it might depend on—is loaded at a
randomized base address in the memory [94]. The diversity introduced
by ... . . . . . . . .ASLR is rather limited and only introduced at run time. This means
developers still have to distribute only a single program binary, but
also that attackers have an easier time overcoming the diversity in an
automated manner, through information leaks [101]. The randomized
base address of the program binary is confidential information, to which
the attackers are not privy. Just a single information leak is enough to
compromise this confidentiality, however. When binaries are diversified
more comprehensively and more entropy is introduced throughout the
binary, more information leaks are required to overcome it. One example
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of such a diversification is randomly introducing no-op instructions all
over the binary; these instructions do nothing when executed, but result
in sufficiently different binaries.

In general it is possible to automatically add diversity to the program
at all points in its ... . . . . . . . .SDLC: this can happen before distribution, so that
every user receives his own, unique, diversified binary; or it can happen
at run time, with the program diversifying itself during startup or even
while running [74]. Diversifying transformations can be applied on
source code, ... .IR code, or binary code. They can be applied by a source-to-
source rewriter, a compiler, a binary rewriter, or some other specialized—
possibly embedded—tool.



Chapter 3

∆Breakpad

Program diversification provides a probabilistic defense, as discussed
in Section 2.3.4. When academics present new and more advanced
diversification schemes, industrial developers typically appreciate their
protection strength, but their costs and limitations with respect to the
... . . . . . . . .SDLC severely restrict their practicality. Just generating and distributing
N diversified versions of the program binary already incurs a significant
overhead compared to distributing just a single, undiversified binary.
On top of that, once theseN versions are out in the real world, they need
to be supported. One of the open issues with supporting diversified
software is handling the associated crash reports.

Crash reports are often handled in an automated manner through
crash-reporting systems. One instance of such a system is Google Break-
pad, which we discussed in Section 2.1.4. Symbol files are stored on a
crash collector server, allowing the distribution of program binaries that
do not contain debug information. Upon a program’s crash the embed-
ded Breakpad client library sends a minidump to the server, which can
combine it with the stored symbol file to generate stack traces. These
stack traces are then analyzed and classified automatically.

When every user runs his own diversified version of the program,
however, this system no longer works out of the box. Unless the crash
collector stores symbol files for all of the diversified versions, it lacks
the necessary information to identify and interpret the information in
the received minidumps. According to feedback we get from develop-
ers of large, popular open source projects, simplistic solutions to over-
come the mismatch between diversified minidumps and a single symbol
file—such as permanently storing debug information for all diversified
versions—are infeasible because symbol files are quite large. The alter-



32 CHAPTER 3. ∆BREAKPAD

native solution of completely rebuilding a diversified version and its
debug information on the server when a crash report comes in is con-
sidered impractical as well: For larger programs, recompilation of every
crashed version would be compute-intensive, and it requires the precise
reproduction of the developer’s build environment in the crash collection
environment, which might reside on a third party’s infrastructure.

Alternatively, we propose to extend the diversified minidumps with
a small amount of delta data [75], which allows the server to overcome
the discussed mismatch without requiring large amounts of persistent
storage, compute power, or communication bandwidth. We present such
an extension for Breakpad: ∆Breakpad. It supports crash reporting of
binaries diversified with a combination of three existing diversifications.
Our contributions are the following:

• An analysis of the effects of the three existing diversification
schemes on x86 and ARM debug information.

• An open-source implementation of those schemes based on min-
imal adaptations to the widely used, state-of-the-art LLVM 5.0
compiler.

• The ∆Breakpad approach, and an open-source implementation
thereof, in which ∆data bridges the gap between a diversified
binary crash report and debug information from a non-diversified
binary. This implementation consists of scripts that prepare and
manipulate inputs for Breakpad components, but it involves no
changes to the existing code base.

• Two techniques to minimize the amount of ∆data necessary to
bridge that gap.

• An evaluation on a set of benchmark programs, measuring the size
of the ∆data, as well as the computational cost of building and
handling it.

This chapter is structured as follows. Section 3.1 provides back-
ground information, and analyzes the problem at hand for different
types of CPU architectures in terms of: offset diversification schemes,
debug information required for crash reporting, and the impact of the di-
versification on this information. Next, Section 3.2 presents an overview
and detailed discussion of the ∆Breakpad approach as an extension of
Google Breakpad. Section 3.3 discusses practical aspects of the diversify-
ing tool flow implementation. The results of an experimental evaluation
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Figure 3.1: Stack frames in original and diversified binaries

are presented in Section 3.4, after which Section 3.5 discusses alternative
designs and generalization issues. Section 3.6 discusses related work
and Section 3.7 draws conclusions.

3.1 Background & Problem Statement

3.1.1 Offset Diversification

In this chapter, we focus on diversification schemes that alter offsets
between instructions in a program and offsets between elements in stack
frames. We focus on compiled languages such as C and C++ that pro-
vide no memory safety [101]. The studied types of diversification have
proven to be useful on top of basic ... . . . . . . . .ASLR, because they raise the bar for
information leak attacks: When offsets within memory segments are
diversified on top of their start addresses, one leaked address no longer
directly informs attackers about the locations of other potentially inter-
esting elements. We deploy three existing offset diversification schemes:

1. Function Shuffling The order of all the functions in a whole binary
is randomized. This randomizes inter-procedural code offsets with
high entropy [19].
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2. Randomized NOP Insertion At random locations, for some aver-
age frequency, NOPs (no-operations) are inserted into the code
bodies of all the functions. This randomizes intra-procedural code
offsets [60].

3. Randomized Stack PaddingA randomnumber of bytes is inserted
in between the stack locations of buffers (present in the local area)
and those of the return addresses [45]. The impact on the stack
frames is visualized in Figure 3.1. It randomizes the distance from
buffers to stored return addresses, as well as the distances between
return addresses in different stack frames.

We do not claim that these three schemes offer the most powerful protec-
tion that diversification can offer. They do offer substantial protection,
however, and as wewill demonstrate, can bemade compatible with crash
reporting.

To implement these schemes, stochastic decision processes decide
on the function ordering, on the locations to insert NOPs, and on the
amounts of stack padding to insert. The stochastic decision processes are
deterministic as they are based on pseudo-random number generators
(PRNGs). To generate diversified code fragments, it suffices to feed the
PRNGs different random seeds.

As the three schemes are conceptually simple, their decision pro-
cesses do not involve checks of complex preconditions on the code
fragments to be diversified. Hence no complex compiler technology
is needed to replicate the decision processes, even in cases where the ap-
plication of a scheme in one compilation step can trigger hard-to-predict
indirect effects by triggering additional code transformations later down
the compilation process. All of the necessary information to replicate
them (such as function names, function body sizes, ...) is readily avail-
able in standard debug information (as will be discussed in the next
section) or can trivially be generated during the compilation process,
without needing to make large changes to the compilers.

A direct effect of the three schemes is that offsets encoded in the code
section of a binary change. With the first two schemes, the displacements
between instructions change, as does the offset of all instructions relative
to the start of the code segment of the binary. In the code section, this
implies changes to the ... . . .PC-relative offsets encoded in, e.g., direct control
flow transfers. With the third scheme, the direct changes occur in the
displacements between the base pointer and SP (Stack Pointer) on the
one hand, and the data items in a stack frame on the other hand. So
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Description:
FUNC address size parameter_size name
address size line filenum

Example excerpt:
FUNC 157c 34 0 google_breakpad::LineReader::PopLine
157c 4 113 4
1580 30 116 4
FUNC 15b0 38 0 sys_close
15b0 4 2979 16
15b4 1c 2979 16
15d0 10 2979 16
15e0 8 2979 16
FUNC 15e8 5c 0 google_breakpad::PageAllocator::FreeAll
15e8 4 142 13
15ec 8 142 13

Figure 3.2: Source line mapping in the symbol file

offsets encoded in stack memory operations change, as do the immediate
operands of instructions that produce pointers to stack-allocated data. In
all three schemes, the diversification hence results in changes to offsets
encoded in instructions as immediate operands. The indirect effect of
those changes on the debug information depends significantly on the
type of processor architecture, as we discuss in Sections 3.1.3 and 3.1.4.

3.1.2 Necessary Debug Information

The debug information of interest is embedded in the symbol files used
by Breakpad. Conceptually, it consists of source line information and
stack unwinding information. For both of those, the code is partitioned
in regions: short sequences of consecutive instructions. The line informa-
tion consists of a single list of regions. For each region, the start address,
the size, and the corresponding source file and source line number are
stored. In the symbol files that Breakpad uses, this information is stored
in human-readable form, as shown in Figure 3.2. Each line consisting of
hexadecimal numbers corresponds to one region.

The stack unwinding information also consists of a list of regions,
described by their start address and size. Each region also comes with a
description of the locations in the program state where the debugger’s
stack unwinder will find the necessary information to unwind the stack.

Figure 3.3 shows an excerpt of an ARMv7 symbol file. The post-
fix expressions on registers (sp, r11, lr, ...) express how to compute
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Description:
STACK CFI INIT address size reg1: expr1 reg2: expr2 ...
STACK CFI address reg1: expr1 reg2: expr2 ...

Example symbol file excerpts:
STACK CFI INIT 1bdc f0 .cfa: sp 0 + .ra: lr
STACK CFI 1be0 .cfa: sp 8 + .ra: .cfa -4 + ^ r11: .cfa -8 + ^
STACK CFI 1be4 .cfa: r11 4 +

STACK CFI INIT 28a4 f8 .cfa: sp 0 + .ra: lr
STACK CFI 28ac .cfa: sp 20 + .ra: .cfa -4 + ^ r4: .cfa -20 + ^

r5: .cfa -16 + ^ r6: .cfa -12 + ^ r7: .cfa -8 + ^
STACK CFI 28b4 .cfa: sp 904 +

Corresponding assembler code excerpts:
<function1>: push {fp, lr}

add fp, sp, #4
sub sp, sp, #16
...

<function2>: push {r4, r5, r6, r7, lr}
cmp r3, #0
sub sp, sp, #884 ; 0x374
...

Figure 3.3: Stack unwinding information in the symbol file

the necessary properties of the frames on the stack when execution has
reached a given region. These properties are the canonical frame address
(.cfa), the return address (.ra), and the values of callee-saved registers
in a function’s caller. The first three records in the excerpt relate to
function1, of which the prologue’s assembly code shows it has a FP
(Frame Pointer) (r11 according to the ARM EABI). The expression for
.cfa on the first line encodes that on entry to function1, the ... .SP still
points to the start of the function’s stack frame. The second line clarifies
that after the push instruction, two callee-saved registers can be found
on the stack, and the ... . .SP points 8 bytes beyond the start of the frame.

To enable the construction of a source-level stack trace on a crash
server on the basis of undiversified debug information and a diversified,
crashed binary’s minidump, ∆Breakpad needs to be able to replicate the
diversification’s effect on the symbol file. Given the discussed format
of that file, ∆Breakpad needs to replicate the diversification-induced
changes to the number and ordering of regions, changes to their start
addresses and sizes, and changes to the locations where relevant pieces
of program state are stored.



3.1. BACKGROUND & PROBLEM STATEMENT 37

We observed that in the symbol files of our benchmark suites, about
90% of the records specify line number information, and about 7% pro-
vide stack unwinding information, with the rest spent on descriptions
of the files and paths, and on the interfaces that are exported. Those 7%
do occupy about 20% of the symbol file size, however: As can be seen
in Figures 3.2 and 3.3, stack unwinding records are much longer than
code/line region records.

3.1.3 Indirect Effects in x86 Binaries

On variable-width CISC architectures such as Intel’s x86, the indirect
effects of the three diversification schemes are mostly limited to addi-
tional changes in the displacements between instructions. When, as a
result of a changed offset, less or more bytes are required to encode
that offset as an instruction’s immediate operand, the x86 compiler will
simply generate another form of the same instruction that uses less or
more bytes. In addition, as the compiler might put certain instructions
on specific alignments to optimize instruction fetching or instruction
caching, it might insert different amounts of padding as a result of the di-
versification. Such changes only alter the addresses and sizes of regions
in the symbol files.

More or less the same happens as a result of the randomized stack
padding. In many functions, no instructions are present in the function
prologues/epilogues that only increment/decrement the ... . .SP. To allo-
cate/deallocate the additional randomized padding in such functions,
additional instructions have to be inserted in the prologue/epilogue. In
the symbol file, this comes mostly down to splitting regions in the stack
unwinding information: one region before the ... . .SP increment/decrement,
and one region after it.

Consequently, replicating the effects of a diversification on the debug
information stored on a crash collector requires updating the number,
addresses, and sizes of regions, as well as the offsets where relevant state
is stored in stack frames. To do so, it suffices for the crash collector to
have (i) the original, undiversified binary including its debug informa-
tion; (ii) a script that replays the deterministic decision processes of the
randomizing diversification schemes; (iii) the seeds and keys that were
used for generating the diversified binary.

We thus conclude that on architectures like x86 it suffices to embed
the seeds and keys in the binaries, to extend the Breakpad client to send
them along with the minidump to the crash collector, and to extend the
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Breakpad minidump processor to let it replicate the impact of the diver-
sification process on the symbol file. For that replication, the complete
original compiler is not required. Instead, a simple script suffices that
replays the stochastic diversification decision processes for the program
at hand, i.e., taking into account the alignment requirements of the in-
dividual program fragments and the locations where different types of
offsets are encoded in the code. A complete approach that covers these
features and more is presented in Section 3.2.

3.1.4 Indirect Effects in ARMv7 Binaries

On architectures like the ARMv7 RISC architecture, the situation is quite
different.1 The same changes occur, e.g., with respect to the function
prologues and epilogues, but there are three extra factors causing many
more indirect effects.

Fixed-width instruction encoding. ARMv7 instructions are 16-bit
or 32-bit wide. The immediate operands of ALU and LD/ST instructions
can therefore only be quite narrow. Thus, when offsets grow bigger
because of diversification, it can become impossible to encode them as
immediate operands. Instead, the offsets then have to be stored in regis-
ters. This requires additional instructions and puts extra pressure on the
register allocator, which can result in instructions becoming scheduled
in different orders. In fact, we have observed that if the same offset
has to be generated multiple times, the compiler sometimes applies
common-subexpression-elimination [86], which can have a global im-
pact on register allocation and instruction scheduling. Furthermore, we
have observed that the compiler sometimes changes the base register
used in LD/ST instructions, e.g., when the offsets of a location in the
stack frame relative to the ... . .SP and/or the ... . .FP change.

Rotating immediate operands. The ARMv7 architecture has a pe-
culiar way of encoding offsets as 8 consecutive bits that can be rotated
over a 5-bit amount. It therefore also happens that offsets that could
not be encoded as immediate operands in the original binary become
perfectly fine ones after diversification. For example, whereas an original
offset 0x3ff0 cannot be encoded in one immediate operand, it does work
perfectly fine for the increased offset 0x4000 that can result from adding
stack frame padding.

1The 32-bit part of the ARMv8 architecture, which is still omnipresent on mobile
devices, is mostly identical to ARMv7.
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The visible ... . .PC. ARMv7 code typically contains a sizable amount of
... . . .PC-relative computations, both in position-independent and in position-
dependent code. The reason is the visible ... . . .PC. Constant values that
cannot be encoded in individual immediate operands, such as vectors
of numerical values to be used by vector instructions, and constants
unknown at compile time, such as absolute addresses or inter-modular
offsets, are often loaded from so-called literal pools: data chunks inter-
spersed with the code, accessed through ... . . .PC-relative load operations. As
our diversification schemes can change the sizes of code fragments, and
as only narrow offsets can be encoded, they also affect the location where
the compiler injects the literal pools in between the code. Whereas the
order of instructions and literal pools can remain the same when NOPs
are inserted randomly in x86 code, it cannot remain the same in ARMv7
code.

In conclusion, when targeting an architecture like the ARMv7, we
have to expect much further reaching changes to the code section, even if
we only apply our three relatively simple offset diversification schemes.
Moreover, on such an architecture it is impossible to replicate the changes
to the corresponding symbol file completely without replicating part
of the compiler infrastructure that was used during register allocation,
instruction selection, and instruction scheduling. In other words, it
cannot suffice to put a simple script on the crash collector server to
replicate the impact of the diversification on the symbol file.

3.2 The ∆Breakpad Approach

To overcome this problem, ∆Breakpad combines three main concepts.
The first concept is imperfect replication of the diversification process’ im-
pact on the symbol file. The second concept is patching of the imperfect
replication result to make it perfect. The crash collector will not only
receive the necessary seeds and keys to replicate the diversification deci-
sion process, but also a patch that will allow it to fix any imperfections
in the performed replication. Next to the minidump, the seeds, and the
keys, the ∆Breakpad client thus also has to send the patch to the crash
collector. The third concept is ∆-minimization, with which we denote the
adaptation of the compilation and diversification process to minimize
the sizes of the patches that the client has to send to the crash collector.

Figure 3.4 presents an overview of the ∆Breakpad approach. It looks
much more complicated than the Breakpad overview in Figure 2.1, but
the main Breakpad components are still present, and are in fact reused
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as is: ∆Breakpad consists of scripts and unmodified existing Breakpad
tools. As we will discuss in Section 3.4, it requires only minimal changes
to the build system tools to generate the diversified binaries and ∆data.

3.2.1 Crash Handling & Stack Trace Generation

Importantly, the ∆Breakpad approach does not require any change to
the minidump that is sent by the client to the server. The minidump file
format as developed by Microsoft is similar to core dump files, but much
smaller, better documented, and less ... . .OS-specific. A minidump contains:

• A list of the executable and all shared libraries loaded into the
process when the dump was created.

• A list of the process threads, with their stacks andprocessor register
contents. Complete stacks are included because the applications
typically do not contain debug information to analyze the stack.

• Some more system information, including the processor and .... . .OS
versions, as well as the reason for the crash.

We only need adapt the Breakpad client such that it sends the server
a small chunk of ∆data along with the minidump (bottom right of
Figure 3.4). This does not require any patch to the Breakpad library
(https://github.com/google/breakpad/) that is to be linked into an
application to enable Breakpad crash reporting. That library is only
responsible for dumping the necessary information about a crash to disk.
A separate process is then responsible for sending the data to the crash
reporter. This isolation minimizes the risk that Breakpad’s operation is
corrupted by the trigger of the crash (e.g., buggy code being executed).
The separate process needs to be implemented and customized for every
... . . .OS and usage scenario. For ∆Breakpad, we only need to customize it
some more to let it deliver the ∆data with the minidump. That ∆data
contains the random seeds, keys, and other parameters that the server
needs to perform the imperfect replication, as well as the aforementioned
patch. If necessary, the ∆data can be encrypted and signed to guarantee
authenticity, integrity, and confidentiality.

The crash collector server still persistently stores debug info in the
form of a single symbol file of the default binary. No changes to its
format are required, so the existing Breakpad symbol dumper utilities
for the major ... . . . .OSs can be reused out of the box to extract the necessary
information from the DWARF or STABS debug sections in ELF object

https://github.com/google/breakpad/
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files or from stand-alone PDB (Microsoft’s Program Database format)
files.

In addition, the server persistently stores a diversity opportunity log.
This log is generated during the default compilation, i.e., when the diversi-
fying tool chain is invoked without applying any actual diversification
to generate the default binary. It lists all the opportunities for diversifica-
tion that occurred during the generation of that binary, but that were not
exploited. For example, it lists all the program points where the diversi-
fication process considered but skipped inserting NOPs. An essential
feature of the diversity opportunity log file is that it lists (i) all decision
points where, during an actual diversifying run of the tools, random
numbers are drawn from the PRNG; (ii) the necessary information for
determining the diversification options from which one is selected with
each drawn random number.

When a crash report arrives on the server, the ∆Breakpad replicator
replicates the impact of the diversification process on the symbol file
in a couple of steps. First, the replicator extracts, decompresses, and
(optionally) decrypts the ∆data.

Next, the replicator extracts the seeds, keys and possible parameters
from the ∆data, to replicate the impact of the diversification decision
process on the default symbol file by means of the opportunity log. The
replicator initializes a PRNG with the same parameters and random
seeds that were already used on the build system for the actual diver-
sification of the binary from which the crash report was achieved. The
replicator then draws random numbers from that PRNG at each point
where the original diversification process had already drawn numbers.
For each drawn number, the replicator then adapts the content of the
symbol file to replicate (approximately) the impact the original diversifi-
cation step had caused on that file. The overall result is an approximation
of the diversified symbol file, i.e., the symbol file that the original Breakpad
symbol dumper tool had produced on the build system for the diversified
binary. It is an approximation because the replicator only models direct
effects of the diversification, such as increased region sizes resulting
from inserted NOPs, but no secondary effects like the ones discussed in
Section 3.1.4. So finally, the replicator extracts the patch from the ∆data
and applies it to the approximation, thus reproducing an exact copy of
the diversified symbol file.

As the contents of that diversified symbol file match the contents
of the received minidump, the existing Breakpad minidump processor
can then be used to produce the human-readable stack trace. Notice
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that this stack trace only contains information at the abstraction level of
the source code. Crashes occurring in corresponding regions in differ-
ently diversified versions of the binaries will hence produce exactly the
same stack trace. As such, all existing manual or automatic tools and
techniques to analyze and classify the stack traces, e.g., for triaging, still
work out of the box.

3.2.2 Generating the ∆data

The top part of Figure 3.4 shows the adapted build system. On the
right, the standard Breakpad symbol dumper flow is shown to generate
the default symbol file, to be stored persistently on the crash collector
server. This symbol file is extracted from the default binary. On the
left, the diversified binary is generated, along with the diversified symbol
file, and the decision process log. The latter consists of the same info as
the opportunity log, plus a description of the actual result from the
applied diversification. Using this log and both the diversified and
default symbol files, our∆Breakpad symbol differ then generates the∆data,
in particular the patch part of it. Finally, the ∆data packer compresses,
and optionally encrypts and signs the data and injects it as an additional
section into the stripped diversified executable. The resulting binary is
then distributed to the end user, ready to be executed and crash.

3.2.3 Combining Multiple Diversification Processes

In order to make the described approach work, we need to ensure that
the replication of the decision processes on the crash collector (on the
basis of the opportunity log generated for the default binary) stays
synchronized with the decision process as it was executed during the
generation of the diversified binary. This is non-trivial when one wants
to apply multiple forms of diversification one after the other. Because of
the already discussed indirect effects of diversifications, the replication
process does not know the exact outcome of an earlier diversification
applied to some code fragment. The replication process hence does
not know the exact form of the code fragment onto which the later
diversification is applied.

For example, consider the design where randomized padding is in-
jected into a function’s stack frame first, and random NOPs are inserted
in its code body afterwards, after instruction scheduling has been per-
formed. Given the ordering of compilation phases in a compiler, this
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is a reasonable design [86]. As discussed in Section 3.1.4, the injected
padding can cause changes in the number of instructions in the func-
tion body. If this actually happens, and if the later NOP insertion pro-
cess draws a random number for each instruction in the code to decide
whether or not to insert a certain number of NOPs after that instruction,
the replicator will draw more or less random numbers from the PRNG
than were counted during the generation of the default binary.

Fundamentally, the problem is that the diversifying NOP insertion
is then performed on code that differs from the code from which the
opportunity log was constructed. So in that case, the replication of
the decision process on the crash collector will at some point become
desynchronized with how the actual diversification was decided. Unless
special care is taken, this will result in completely diverging replication
from that point on, which can only be compensated by including a huge
patch in the ∆data.

We avoid this in two ways. First, the decision processes of the com-
bined diversification schemes need to be carefully designed to become
mostly, if not completely independent. In our diversifying tool chain,
we achieve this by applying the later decision processes at a granularity
of code fragments that is not likely to be impacted by earlier decision
processes. Trivially, the order in which functions are shuffled is com-
pletely independent from the number of NOPs inserted in them, as well
as from their stack padding size. We also observed that although random
stack padding and NOP insertion often result in changes in the number
of instructions in the function bodies, in particular when the ARMv7
architecture is targeted, they rarely impact the structure of the functions’
.. . . . . . . . .CFGs. The few cases in which we did see changes to the ... . . . . . . .CFGs are the
following:

• When trampolines had to be inserted or could be removed as a
result of changed code displacements.

• When basic blocks became so big or small that they (no longer)
had to be split, e.g., to provide space for a literal pool.

• When heuristics used by the compiler consider the sizes of the
involved fragments. For example, in the LLVM compiler, we ob-
served that the tail duplication optimization considers code size
(small blocks are duplicated more), as do if-conversion and tail
merging.
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Randomized stack padding and NOP insertion can hence impact the
... . . . . . . .CFGs of functions. Importantly, the effects of the mentioned trans-
formations do not escape functions, as the transformations are intra-
procedural.

Whereas NOP insertion inherently changes the sizes of code frag-
ments, stack padding changes them much less frequently. We build on
this observation by performing the stack padding insertion first, followed
by the NOP insertion, of which the decision process is performed basic
block per basic block, with a re-initialization of the used PRNG before
each block. So however the number of instructions in the basic blocks are
impacted by the former two diversification steps, as long as the ... . . . . . .CFG of
a function is not impacted, the replicator’s decision process will remain
synchronized automatically. Function shuffling is applied last.

Our second way deals with the above cases where a function’s ... . . . . . .CFG is
actually changed as a result of the first two diversifications. As function
shuffling has no impact on the function bodies, such changes come only
from stack padding. In such cases, we accept the desynchronization,
but we contain it to the function whose ... . . . . . . . .CFGs is changed, i.e., to that
function’s part of the symbol file.

To avoid that the resulting desynchronization in the replication spills
over into other functions, the tools that perform the diversification and
the imperfect replication resynchronize the used PRNGs upon entry to a
function. Such resynchronization per function can be implemented in
several ways. Hierarchical PRNGs are one option, whereby the top-level
PRNG is invoked on entry to each function. In our tools, we alternatively
reset the PRNG with a new seed value that is computed by hashing a
unique, immutable identifier of the function combined with the diversi-
fication seeds and keys. With cryptographically strong hash functions,
the new seeds cannot be predicted by attackers unless they know the
(global) diversification seeds and key. As a unique function identifier
that will not be impacted by any diversification step, we use the concate-
nation of the (mangled) name of the function, the name of the object file
from which the function originated, and the name of its section within
that object file. By compiling code with the -ffunction-sections flag,
these identifiers are guaranteed to be unique. Every function is then put
into its own section in the generated object file, and that section name
then includes the function name, even for functions that are themselves
anonymous in the object file, such as C functions declared static).
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3.2.4 ∆-Minimization

We want to demonstrate that crash reporting for diversified software is
feasible with limited overhead. Therefore, we explored several ways of
minimizing the ∆data. A first option to reduce the size of the ∆data is
to compress it or to use more efficient encodings for the information that
needs to be stored in the ∆data. Compression and coding are not the
focus of our work, however, so we will simply rely on existing compres-
sion schemes to compress information encoded in a custom developed,
but likely suboptimal coding scheme. A second option is to adapt the
processes that perform the compilation and diversification. Those pro-
cesses have an impact on the amount of imperfection in the replication,
i.e., on the ∆ between the diversified symbol files and the symbol files
reconstructed through imperfect replication. Those processes can hence
be tweaked to minimize that ∆, which will in turn lead to a reduction
in the amount of patching information needed in the ∆data. Tweaking
these processes is the option we explore in this section.

We opt not to achieve a smaller ∆ at all cost, however. Apart from
the restrictions discussed in Section 3.2.3, we do not want to impose
strict limitations on the freedom with which to apply the diversification
schemes. For example, when we let a compiler select a randomized
amount of stack padding for some function, we do not want to restrict
its selection to values that preserve the exact instruction schedules in
the function body. Besides helping us to keep the diversification process
decision logic (in the compiler as well as in the replicator) independent
of compiler internals, this ensures that the entropy generated by means
of the diversification does not depend more than strictly necessary on ar-
tifacts of the code being diversified. From the perspective of security, this
is obviously an advantage. Furthermore, wewant to limit the changes we
need to make to existing compilers and related tools used for generating
and/or diversifying the binaries. What remains then to reduce the ∆,
is the selection of the default compilation strategy and a minimal set
of adaptations to the compilation tools to enforce that strategy. For the
three forms of offset diversification we deploy, we identified two tiny
but very useful adaptations.

Adaptation 1: Default Stack Padding

The first adaptation is that 8 bytes of stack padding are added in every
function in the default, non-diversified binary. During the diversification
process itself, every function gets a randomized number of padding
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bytes that is a strictly positive multiple of 8. This adaptation enforces
the insertion of padding operations in all function versions, i.e., default
ones and diversified ones. It therefore limits the number of cases where
the code regions of the function prologues and epilogues as listed in the
default symbol file need to be split to match the regions in the diversified
symbol file (as discussed in Section 3.1.3).

The default padding enforces the inclusion of instructions to allocate
and deallocate stack space in the function prologues and epilogues:
the single prologue then contains one add sp, sp, #const instruction
(or multiple ones, if the size of that stack space, i.e., the const value,
cannot be encoded as a single immediate operand), and each copy of
the epilogues contains one (or more) sub sp, sp, #const instructions,
both in the default program version and in the diversified versions.
Without the default padding, many functions in the default binarywould
not contain such ... .SP incrementing/decrementing instructions. For those
functions, the default paddingminimizes the differences between default
and diversified code and their corresponding regions in the symbol files.

For functions that already allocate and deallocate stack space in the
default binary, adding default padding is useful as well. We observed
quite some functions where the local area of a stack frame only holds
relatively large arrays whose sizes are powers of two. In those functions,
the aforementioned const operands are large values of which the least
significant bits are all zeroes. Those values can hence be encoded as
single immediate operands in the ARMv7 and similar architectures. By
adding another 8 bytes of padding, a lower bit becomes set as well. The
value can then no longer be encoded as a single immediate operand
in the default binary, just as it will likely not be encoded as a single
immediate operand in the diversified binaries, where a randomized
(but still relatively small) amount of padding is added. The average
difference between the default binary and the diversified binaries, and
hence the average amount of information to be stored in the ∆data, is
thus reduced. For other functions, such as those with small local areas,
the added 8 bytes typically do not impact which offsets can be encoded
as immediate operands. The added 8 bytes then do not offer any benefit,
but they also do not hurt in any way.

Minimizing the differences that randomized stack padding intro-
duces between default and diversified code fragments is particularly
important for the function epilogues; not only to make the correspond-
ing regions in the symbol files more similar to one another, but also to
limit indirect effects on the generated code. As a result of the default
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padding, the epilogues in a function typically have the same size in the
default binary and in the diversified binaries. Maintaining the same size
for epilogues throughout the stack frame diversification is important
for ∆-minimization because the size of basic blocks, which is the form
under which epilogues occur in the diversifying compiler’s intermedi-
ate code representation, plays a significant role in the heuristics that
steer some compiler optimizations, as discussed in Section 3.2.3. As a
result, the insertion of extra instructions in the epilogues can result in al-
tered ... . . . . . . .CFGs. The introduction of default padding reduces the occurrence
of such alterations. For the interested reader, Appendix A provides a
quantitative analysis of this effect. In any case, reducing the number
of alterations in the ... . . . . . . .CFGs reduces the number of desynchronizations
during the imperfect replication, thus minimizing the required ∆data.

The 8-byte padding in the default binaries has no impact whatsoever
on the size or on the performance of binaries distributed to end users:
The default padding only influences the default symbol files and the
∆data that will be used to reconstruct the diversified symbol file. With
respect to security, there is only a small impact on distributed software
versions. By excluding the possibility of adding zero bytes of stack
padding to a function, keeping only the values 8, 16, ..., 256, we reduce
the entropy in the stack frame layout of the diversified binaries from
ln(33) to ln(32).

Note that this 8-byte padding in the default binary can be imple-
mented trivially in a diversifying compiler that already injects random-
ized stack padding: Default stack padding simply comes down to execut-
ing the diversified stack padding code with a non-diversified amount.

With respect to correctness, we note that by making all diversifying
padding multiples of 8 bytes, the padding does not affect the natural
alignment of data in stack frames. Typically, that data needs 8-byte
alignment or less. This is reflected in the ... . . . . . .ABIs we know of, and which
impose at most 8-byte alignments. If data in a stack frame needs stricter
alignment, e.g., because vector instructions will operate on wider data
that needs 128-byte or 256-byte alignments, special constructs need to
be used in the code that achieve such alignments independently of the
address at which the stack frame starts. Such constructs include the
use of alloca or the allocation of a bigger array than needed and then
using only an aligned part in that array of which the starting address
is computed at run time. As such constructs function correctly at what-
ever allowed stack frame address, i.e., at any 8-byte aligned stack frame
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address according to the ... . . . . . .ABIs, those constructs survive the addition of
randomized amounts of padding that are multiples of 8 bytes.

One can wonder whether the correctness of special programming
constructs such as tail recursion can be affected by stack padding. We
conjecture that this is not the case when the padding is implemented
correctly. For example, we implement the stack padding insertion by
simply asking the compiler to reserve space for more local variables on
the stack as if more local variables were declared in the source code
of the functions. The correctness of the padding then comes down to
the correct implementation of the existing stack frame allocation in the
compiler. As that allocation is a crucial aspect of any compiler, we can
rely on its correctness.

Adaptation 2: ... . .SP/... . .FP-Relative Access Optimization

The second adaptation consists of disabling a minor optimization in
the (ARM-specific) compiler back end. When a function has a ... .FP, the
compiler back end can choose to access data in its stack frame via ... . .FP-
relative LD/ST instructions or via ... . .SP-relative ones. The decision can
take into account the offsets of the data relative to the ... . .FP and to the
... . .SP. By choosing the option by which the offset can be encoded in one
immediate, rotating operand (as discussed in Section 3.1.4), the code
can be optimized.

After disabling that optimization, the compiler alternates less be-
tween ... . .FP-relative and ... . .SP-relative addressing as a result of randomized
padding. The diversified binaries therefore become more similar to the
default binary, which ultimately results in smaller ∆data. Appendix A
backs this up with quantitative data for the interested reader.

This adaptation is trivial to implement: In LLVM, a one-line edit (to
a condition in an if-statement) suffices. However, unlike the default
stack padding, this tweak does potentially impact performance. In the
SPEC2006 C and C++ benchmarks in our benchmark suite compiled
with -O2, we observed no significant average performance impact: The
average execution times increased with the rather small amount of 0.34%.
For individual benchmarks, disabling the optimization resulted into
anything between a 0.86% speedup and a 2.70% slowdown. These effects
are likely caused by accident, such as improved or worsened instruction
cache behaviors that accidentally result from small code changes, i.e.,
unintentional and beyond the scope and awareness of the compiler’s
optimizations [87]. Still, these numbers indicate that there can be a small



50 CHAPTER 3. ∆BREAKPAD

effect, that the software developer in certain performance critical cases
may want to trade-off against the potential benefits in terms of ∆data
size. The latter is evaluated in Section 3.4.

With respect to security, this adaptation has no impact: The offsets in
the stack frames do not change because of this optimization, and hence
the entropy resulting from the offset randomization is not impacted.
With respect to correctness, this adaptation has no impact either: We
only let the compiler skip the exploitation of an optimization opportunity.
In cases where the transformation implementing the optimization would
be mandatory to generate correct code in the first place, it can of course
still be applied as is. We know of no such cases, however.

3.2.5 Profile-Guided Diversification

Some diversification schemes can benefit from profile information to
reduce the overhead. For example, the performance overhead of NOP in-
sertion can be reduced by concentrating NOPs on infrequently executed
program points [60]. ∆Breakpad supports such profile-guided diversi-
fication: As long as both the default compilation and the diversifying
compilation runs are served the same profile information, the decision
process logs and the diversity opportunity log will be consistent with
each other, so the ∆Breakpad replicator will work just fine.

3.3 Prototype Diversification Tool Flow

Aswewant to demonstrate that our approach canworkwith small∆data
sizes even on architectures that are harder to target, we evaluated it on the
more challenging ARMv7 architecture. In particular, our prototype tools
support the 32-bit subset of the ARMv7-A architecture (i.e., excluding
16-bit Thumb and Thumb2 code).

Diversification processes can be applied at many stages during the
... . . . . . . . .SDLC [73]. In our prototype implementation, the three diversification
schemes are appliedwhen the binaries are built. The schemes are applied
in the already discussed order using existing open-source compiler tools.

3.3.1 Stack Padding

First, we adapted LLVM 5.0 for randomized stack padding. All functions
get a random stack padding between 8 and 256 bytes, but always a
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multiple of 8 bytes, as discussed in Section 3.2.4. The amount of padding
for each function is determined by hashing the function’s (mangled)
name. The diversification seed is the key to the hash function. In this
stateless scheme, the amount of padding in each function is independent
of the order in which functions are compiled. This further eases the
replay on the crash server, for which all the necessary function names
are already present in the default symbol file.

Our LLVM patch to implement the stack padding and related
command-line options is 41 lines of code in total. The stack padding
itself is implemented in the architecture-independent code of the LLVM
compiler pass that inserts function prologues and epilogues. Amongst
others, that pass determines the total size of each function’s stack frame,
including the space needed to implement calling conventions. Our patch
extends that computation to insert randomized stack padding.

On top, a two-line patch sufficed to disable the ... . .SP/... . .FP-relative stack
access optimization discussed in Section 3.2.4.

3.3.2 NOP Insertion

We further adapted the LLVM 5.0 ARM back end to perform random-
ized NOP insertion and to generate an opportunity log, implementing
a decision process as discussed in Section 3.2.3. It inserts a NOP in
between every consecutive pair of instructions in a basic block with a
user-controlled probability. For our experiments, we set this probability
to 20%. More complex schemes, that introduce more entropy in the
offsets between individual instructions in function bodies can easily be
envisioned. Introducing many more NOPs will likely not be acceptable,
however, as it obviously inflates the code size. As long as the more
complex schemes have a decision process along the lines of the one dis-
cussed in Section 3.2.3, with a fixed number of random numbers drawn
per basic block, we conjecture that the ∆data size will not be impacted
significantly.

To minimize side effects that would lead to inflated ∆-data, NOP
insertion is done as late as possible in the compiler back end. The new
NOP insertion compiler pass is invoked after instruction selection, if-
conversion, instruction scheduling, register allocation, peephole and
other assembly-level optimizations, and code layout; and right before
the very last LLVM ARM code generation pass that inserts literal ad-
dress pools and the necessary trampolines. As already discussed in
Section 3.2.3, that last pass can only be executed while all the basic
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blocks sizes are being finalized: Trampoline insertion and literal address
pool insertion leads to code size increases, which might necessitate ad-
ditional insertions, so they are performed iteratively until a fix-point is
reached. From then on, no extra insertions can be performed (without
risking having to undo and redo the insertion of pools and trampolines).

To replay the NOP insertion on the server, the opportunity log lists
the functions’ code and data blocks, as well as their sizes. The data
blocks include blobs of data that the compiler stores in the code section
(for various reasons) as well as the literal address pools. Those blocks
are marked as data, such that the NOP insertion replay knows to skip
them, i.e., not to insert NOPs in them. The code blocks correspond to
the basic blocks in the compiler’s intermediate code representation. To
enable the inclusion of all the necessary information, in particular with
respect to literal address pools, the opportunity log is generated at the
end of the trampoline and address pool insertion compiler pass.

Since the number of instructions per basic block can be different in a
diversified binary as a result of stack padding, the data in the opportunity
log allows for relatively accurate, but not perfect replay on the crash
server. The difference is obviously covered by the patch in the ∆data.

Despite our careful design to obtain accurate opportunity logs, we
observed that in some cases, the logs are not completely accurate. When
source code contains inline assembly fragments, the LLVM code genera-
tor handles those mostly as strings, of which it estimates the maximal
code sizes to insert trampolines and literal address pools as necessary.
Most often, those estimates are correct. Occasionally, however, LLVM
overestimates their actual size. This results in desynchronization dur-
ing the NOP-replication, because the replication then inserts NOPs in
later blocks at incorrect addresses, resulting in incorrect updates to the
supposedly corresponding regions in the symbol file.

Fortunately, this formof desynchronization occurs infrequently. Most
user-space application and library code (except for the standard system
libraries) does not include inline assembly. In our experiments, only the
injected Breakpad components contained inline assembly. For all but the
smallest programs, those components make up only a tiny fraction of
the whole binary. Moreover, the desynchronization ends at the function
boundary, when global resynchronization is performed anyway. So the
overall impact on the sizes of the ∆data is minimal.

We conjecture it is possible to eliminate this completely by engineer-
ing a way in which incorrect estimates in the opportunity log are patched
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on the basis of an inspection of the actual assembler code generated dur-
ing the default compilation. This engineering task is left for future work.

Another source of errors in the NOP insertion replay, and desynchro-
nization, is the insertion of the NOPs themselves. These can cause the
location of the data pools inside the function to change, or even cause the
sizes of these pools to change. This form of desynchronization happens
rather infrequently.

Our LLVM patch to implement the NOP insertion technique and
related command-line options is 148 lines of code in total, 60 lines of
which are used for outputting the opportunity log.

3.3.3 Function Shuffling

We use the standard GNU linker for shuffling functions. In prepara-
tion for this, we use the -ffunction-sections compiler flag to ensure
that the compiler puts each function into a separate code section in the
generated object files. To perform the actual shuffling, we simply gener-
ate a custom linker script that enforces a shuffled order of all the code
sections, and hence of all functions. The order is determined with a
pseudo-random number generator that is seeded with the diversification
seed.

This process builds completely on existing linker functionality. No
patch to the linker source code is needed to let it generate the diversified
function orders. For generating the linker script, we extract all the linked-
in functions from the linker map file. All linkers we know can produce
such a file, which basically documents how the original (i.e., default)
linker script was executed on the linked objects.

To replay the shuffling accurately on the crash server, the information
extracted from the linker map file is needed, i.e., the names and sizes of
linked-in functions, as well as their alignment requirements. These can
be obtained from the linker map file and from the object files generated
during the default compilation: The alignment requirements of functions
correspond to those of their corresponding code sections in the object
files. Those section alignment requirements are explicitly encoded in the
object files to allow correct linking. We extract them to include them in
the opportunity log. During the replay, they are useful to predict the
amount of padding that needs to be inserted before each function in the
diversified binary, such that that amount of padding does not need to be
included in the ∆data.
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3.3.4 ∆data

The uncompressed ∆data our tools generate contain human-readable
ASCII text. With more engineering, smaller patch sizes can likely be
obtained, so the (compressed) ∆data sizes we report in the next sec-
tion only put an upper bound on what could be achieved with a more
fine-tuned implementation. If authenticity, integrity and confidentiality
are required for the ∆data it can also be encrypted and signed. This
obviously adds some extra data. For example, when we experimented
with GPG (GNU Privacy Guard, https://www.gnupg.org/) to encrypt
with AES256 and sign using the SHA-1 hash and RSA, we observed
that the ∆data grows with 354–356 bytes (depending on the needed
padding).

3.4 Experimental Evaluation

3.4.1 Benchmarks and Correctness

For evaluating our approach and the correctness of our implementation,
we use the C and C++ programs from the SPEC2006 benchmark suite.
We evaluated the approach on dynamically linked binaries, all of which
also include the Breakpad client next to the actual code. The dynamically
linked, position-dependent binaries were compiled at optimization levels
-O1, -O2, -Os, and -O3. For all four levels, we evaluated two versions:
with and without the -fomit-frame-pointer option. So in total, we
evaluated the benchmarks on eight compilation flag combinations.

For each of those eight combinations, we diversified the benchmarks
using 30 tuples of three random seeds, one for each diversification
schemewe implemented. All diversified versions compiled and executed
correctly with our patches and three-step diversification. Consequently,
our diversification implementation can be considered validated.

To validate the correctness of ∆Breakpad’s crash reporting, we ver-
ified that the diversified symbol files generated with our server-side
replicator on the basis of undiversified symbol files, the opportunity
log, and ∆data are equivalent to symbol files obtained directly with the
symbol dumper from the debug info in the diversified binaries.

https://www.gnupg.org/
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3.4.2 Overhead2

We evaluated the overheads introduced by the diversification and the
∆Breakpad tools with the two ∆-minimization techniques from Sec-
tion 3.2.4 enabled. Table 3.1 contains data for benchmarks compiled
with -O2 -fomit-frame-pointer: The maximum and average sizes of
the ∆data for our three techniques in isolation (A–C) and for all three
combined (D). The listed ∆data sizes are the sizes of the bzipped data,
or simply the size of the random seeds if there was no other ∆data to
be compressed. As the ∆data sizes vary from one diversified version
to another, we list their average size as well as the maximal sizes we
observed during our experiments. These sizes are indicated with “(avg)”
and “(max)” , respectively. The numbers (E) given for the opportunity
logs for three techniques combined are also compressed using bzip2, as
these files are quite large but very compressible. Also given are the sizes
of the default (F) as well as the diversified symbol files (G), and the sizes
of the corresponding stripped binaries (H and J). For the default binaries,
we also report the average stack depth (I) observed over their execution
on SPEC training inputs. This size corresponds to the amount of stack
data that needs to be sent to a crash server in a minidump. As for the
execution times, the table lists the time needed to compile and link the
default binary (K); to generate the ∆data (L); to create a stack trace for a
crash in the main function of the default binary, which requires no stack
unwinding (M); and to produce the diversified symbol file on the crash
server once ∆data is delivered with a minidump (N). The timing data
was gathered using the Python timeit module on a machine with 16 GB
of main memory and an Intel i7-4790 CPU. To put the absolute numbers
in the table in perspective, four columns contain relative numbers on the
right and aggregated numbers at the bottom of the table. The formulas
to compute the relative numbers are detailed in the header rows.

We did not include execution times for generating the actual diver-
sification, because the extra computation time needed to perform the
diversification is negligible compared to the default compilation and
linking times.

From the results in Table 3.1, we can draw several conclusions. First,
the size of the ∆data is small. Even for the three techniques combined
the extra ∆data to be stored in the binaries is roughly three orders of
magnitude smaller than the binary size for each benchmark. Compared

2Between the publication of the paper and the publication of this dissertation we
discovered a bug and subsequently resolved it. Because of this, the results in this section
differ slightly from those in the published paper.
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to the average stack size, which is a good indication of the average size of
minidumps to be sent to a server, the ∆data can range from negligible for
the sjeng benchmark to relatively large, such as for perlbench benchmark.
Thus, the need to send ∆data can significantly increase the amount of
data to be sent to the crash server, up to a factor 3 for perlbench. However,
the increase is relatively high only for programs with shallow stacks. The
absolute increase is, in each case, still limited to less than seven kilobytes.

Secondly, the symbol files barely increase as a result of diversification,
and the opportunity logs are about an order of magnitude smaller than
the symbol files. We can thus conclude that on the client as well as on
the server, only a relatively small price is paid in terms of storage for
allowing diversified symbol files to be recreated.

Thirdly, the computation times required to produce the ∆data on the
build system and to produce the diversified symbol files on the crash
collector server are significant. An important remark needs to be made,
however. Both the generation of the ∆data on the build system and the
reconstruction of the diversified symbol file on the crash collector are
currently implemented in Python. Most of the execution time is spent
in reading and parsing the default symbol file, and in allocating the
internal data structures that represent it. These steps can be optimized
significantly, by preprocessing the default symbol file such that it can be
mapped into memory with one file open operation, by re-implementing
the scripts in a performance-oriented programming language, and by
redesigning the internal data structures for performance instead of re-
search flexibility. The reported processing times are therefore only a large
over-approximation of what more fine-tuned implementations will be
able to achieve. We are hence confident that the computational overhead
on both the build system and the crash collector server can be reduced
to acceptable levels. With a reduction of one order of magnitude, which
certainly seems within reach, the overhead on the crash server could be
reduced to approximately a doubling of the computation time needed
to produce a crash report.

Fourthly, the observations for C++ programs are in line with those
for C programs.

Fifthly, from the individual results in columns A–C, we can make
several interesting observations. Stack padding requires significant but
relatively little ∆data. This results from the fact that with the default
stack padding discussed in Section 3.2.4, relatively few changes to ad-
ditional code regions result from stack offset changes. For almost all
benchmarks, function shuffling only requires 4 bytes of ∆data, which are
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Figure 3.5: Correlation between binary code size and ∆data size

needed to store the key used for the diversification. For one benchmark,
sphinx3, more ∆data is needed. This results from a small number of
system functions being linked in from precompiled crt*.o files, that do
not feature separate sections for each function. As a result, the alignment
requirements of the functions are not replayed correctly, and patching
is needed instead. Finally, the NOP insertion is responsible for the vast
bulk of the ∆data. This is the case because NOP insertion affected the
location of literal address pools in ways that the simple server-side replay
cannot predict accurately.

Figure 3.5 charts the main result, i.e., the ∆data size, in function of
the default binary code size for different compiler optimization levels
(always with the ∆-minimization techniques enabled). The correlation
between the two attributes of code size and ∆data sizes is clear, and it is
also clear that the results are quite similar for the different optimization
levels, with or without ... .FP.

Finally, Figure 3.6 visualizes the effect on average ∆data sizes for each
benchmark compiled with -O2—similar results are obtained at other
optimization levels—of omitting ... . . . .FPs where possible, and of deploying
the ∆-minimization technique discussed in Section 3.2.4. We did not
include the effect of default padding (Section 3.2.4) because that does not
involve any trade-off, as it does not affect the diversified binaries them-
selves. The blue, left bars indicate the effect on ∆data size of omitting
the ... . .FP in functions where that is possible. On some benchmarks, this
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for benchmarks compiled at -O2.

reduced the size; on others it increases the size. On average, the effect
is negligible. The right, orange bars indicate the effect on ∆data size of
enabling LLVM’s ... .SP/... . .FP optimization when code with ... . .FP is generated
for all functions. On average, enabling that optimization leads to 5%
larger ∆data, without outliers up to 18%. We conclude that disabling the
... . .SP/... . .FP optimization is a useful form of ∆-minimization for scenarios in
which, for whatever reason, developers insist on letting their compilers
generate code with ... . . .FPs

Because the whole ∆data of a diversified benchmark version is more
or less equal to a concatenation of ∆data chunks of the benchmark’s
functions, and because the effects of omitting the ... . .FP and of disabling
the ... . .SP/... . .FP optimization are also local to functions, the absolute effect
of those compilation options on a benchmark’s total ∆data size is also
mostly a sum of their effects on a large amount of individual functions. If
we assume that the large set of functions in our benchmark suite is parti-
tioned randomly into the sets of functions of the individual benchmarks,
we expect the results shown in Figure 3.6 to look more like Gaussian
distributions than like uniform ones. And that is what we see. We con-
clude that if one’s goal is to minimize the ∆data size even further than
what we did, the compiler options should not be enabled or disabled
per benchmark. Instead a choice should be made for each individual
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function. With machine learning, or maybe even simple human analysis
and engineering, we conjecture that it will be relatively straightforward
to adapt a compiler for this goal. Still, it would be much more intrusive
than the small patch we now deployed to let LLVM inject the random-
ized stack padding, the NOP insertion, and the ∆-minimization. So a
trade-off needs to be made. Given the already small sizes of the ∆data
achieved with our implementation, we considered it not interesting to
investigate this any further as of yet.

3.5 Discussion

3.5.1 Alternative Designs

In an alternative design option of our approach, one could embed a
unique ID in each diversified binary version, store all ∆data of all pro-
gram versions persistently on the crash server instead of in the diversified
binaries on the user systems, and include IDs in delivered crash reports
to let the crash server look-up the corresponding ∆data. The IDs could
then also serve as decryption and signature keys, such that the data on
the crash server remains confidential until it is truly needed to build a
crash report.

Despite the small sizes of the required ∆data, one problem of such a
design might be the required storage for all that ∆data. In our design
with the ∆data stored in the binary on the user system, the storage space
occupied by old ∆data is automatically freed as soon as an old binary
is discarded by the user, such as when an application is uninstalled or
replaced by an updated version. No third party needs to be informed
when such actions take place.

If the ∆data is stored on a server instead, the server either needs to
hold on to multiple past and present versions of all ∆data, or it needs to
be informed about the discarding of old binaries by users. In the former
case, more storage space is needed. The latter case, depending on the ap-
plication and usage context, involves the collection and communication
of privacy-sensitive and security-sensitive information. Whether either
of those options is feasible, is an open question.

In any case, a substantial amount of additional storage would be
needed on the crash server. If a crash report service runs on a (small)
farm of servers or in the cloud, it is also an open question as to what
the cost might be of coupling all servers in the service to the necessary
storage at sufficient throughputs and latencies. Whether or not existing
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storage-computation solutions might still suffice is unclear; answering
this question is considered out of scope.

In our design, where each contacted crash server receives the
minidump and the ∆data over the Internet, only “centralized” ac-
cess to the default symbol files and opportunity logs is needed. Our
experiments indicated that accessing the opportunity logs on top of the
symbol files (that a standard Breakpad setup needs to access anyway) on
average requires only 8%more data to be accessed from the “centralized”
storage. A 8% increase definitely is an extra cost, but it is not likely to
void the feasibility of existing storage-computation solutions.

3.5.2 General Applicability

The top level of our ∆Breakpad implementation is both architecture-
and compiler-independent. Lower-level components are designed to
cooperate with standard Linux binutils tools such as objdump. On top
of that, the design of the ∆Breakpad symbol differ, the ∆Breakpad repli-
cator, and the ∆data format are architecture-independent and compiler-
independent.

The implementation of the replicator and the opportunity log for-
mat are clearly architecture-dependent, however, and have been tuned
specifically for the diversification schemes we deploy. Those schemes
were also specifically chosen for the ease with which their effects could
be replicated, resulting in small patches. In principle we can create
patches for any diversification scheme, but there are some trade-offs.
Unless replication is at least somewhat correct, patches will grow to a
size where it would be preferable to simply replace them by the entire
diversified symbol file. In other words, our approach then offers no ben-
efit. Likewise, if the replication becomes too complex or time-consuming
for a certain diversification scheme, the ∆Breakpad approach loses its
appeal.

Consider, for example, the many diversification schemes discussed
by Larsen et al. [74], which we mark in italics below. We implemented
forms of three of these schemes: stack padding, which is a form of Stack
Layout Randomization; function shuffling, which is referred to as Function
Reordering; and NOP insertion, which is a form of Garbage Code Insertion.
We conjecture that inserting other forms of garbage code will not result
in larger ∆data as long as a similar amount of code is inserted. We
furthermore conjecture that other forms can be supported with smaller
∆data, because only NOPs (having no side effects) can be inserted any-
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where in code. Other instructions do have side effects when executed,
though. These can only be inserted where they cannot be reached, which
is definitely in fewer places. As for stack layout randomization, more
heavy-weight schemes (such as those in which the locations of local vari-
ables and spilled data in a stack frame are permuted) will likely require
larger ∆data, because in such schemes the offsets to the ... . .SP change. This
is not, or at least rarely, the case in our scheme.

Other existing schemes would result in no changes to the debug infor-
mation at all, and thus do not require any replication or patching. This
will, e.g., be the case for some forms of Register Allocation Randomization
if the randomization is limited to code-quality-maintaining randomiza-
tion, i.e., if no allocations are chosen that lead to longer code schedules.
Instruction Reordering and Basic Block Reordering mostly have local effects
and we conjecture that with enough detail in the opportunity logs—
which would thus become longer—these can be replicated sufficiently
well. Schemes that have a larger impact on the ... . . . . . .CFG—such as Inlining
and Control Flow Flattening—would require significantly more detailed
opportunity logs and replication of compiler internals, and therefore
most likely do not fit our approach.

Our current ∆Breakpad diversification schemes are applied at the
compilation and linking stages of the ... . . . . . . . .SDLC. Schemes applied during
later stages form no conceptual problem. When the diversification hap-
pens after the binary has been delivered to the user—as happens with
diversification at installation time, load time, or even at run time—by
nature the diversification can be performed without requiring the com-
plexity of a full build system. In practice this typically requires that a
form of opportunity log is included in the distributed binary to steer the
diversification, and to allow it to be done both fast and conservatively, i.e.,
without altering the semantics of the diversified software. So by nature
the diversification effect on the symbol file can then also be replayed on
the crash server, assuming that it has access to the same opportunity log
and all sources of randomness that were used during the diversification
on the user system. Few such sources are needed, and as in the current
implementation, they can be included in the ∆data.

We conjecture that in such cases small opportunity logs and ∆data
will suffice. This conjecture is supported by the fact that currently pro-
posed forms of diversification applied late in the ... . . . . . . . . .SDLC are relatively
simple and free of (more global) side effects as the ones we observed in,
e.g., LLVM. The reason is of course that they need to be deployed very
quickly to avoid downgrading the user experience, and hence without
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heavy-weight compiler technology that can rewrite code to compensate
for side effects.

Finally, we see no reason why our approach would be limited to
specific compilation tool flows. In fact, before we implemented NOP in-
sertion in LLVM, we already had an implementation in the post-link-time
binary rewriter Diablo [104]. So the three schemes were implemented
in three separate tools: the compiler, the linker, and a binary rewriter.
While constructing its intermediate representation of the binary code,
Diablo converts literal address pool entries into instructions. After imple-
menting the NOP insertion, Diablo then recreates literal address pools.
Whereas LLVM creates the pools per function, Diablo recreates them
more globally, in effect combining pools from multiple functions into
single pools. As a result, much fewer such pools end up in binaries
rewritten (and diversified) by Diablo. The number of replay desynchro-
nizations therefore was also much smaller in those Diablo-diversified
binaries. As a result, the required ∆data for NOP insertion was on av-
erage 2/3 smaller. For some benchmarks, it was even 90% smaller. As
Diablo does not output correct debug information, however, symbol files
could not easily be generated for the binaries it created. We had to create
these symbol files through an address translation, and verified their cor-
rectness by inducing crashes at randomly selected program locations in
the diversified binaries. The crash reports thus generated were verified
to be the same as generated for the undiversified binaries crashing at the
equivalent program location.

Because of this added complexity, we eventually decided to switch
to LLVM, however. LLVM is a mature, widely used tool, which makes
our contributions readily available to everyone. This switch required
us to adapt the generation of the opportunity log generation and the
replication only slightly.

3.6 Related Work

In the past, both spatial and temporal software diversity has been pro-
posed as a solution to a wide range of problems: Instruction set ran-
domization can prevent, or at least delay, reverse engineering and tam-
pering [112]. Multi-variant execution can be used to detect malware
intrusions [107]. Limited, rather coarse-grained forms of run-time ran-
domization, such as ... . . . . . . . .ASLR, are widely used and significantly raise the
bar for memory corruption attacks [94]. In the academic literature, more
fine-grained forms of diversification have been proposed to raise the
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bar even further [19, 51], including for code dynamically generated
with JIT compilers [59]. Dynamic temporal diversity has been proposed
to mitigate timing side channel attacks [47]. Advanced software fin-
gerprinting schemes can help in identifying the source of illegitimate
software copies [28]. Diversification can prevent collusion attacks to
identify software vulnerabilities based on patches [29]. Some software
vendors diversify the code of their applications whenmajor new versions
are released, to hide the location of the new, valuable functionality in
the new versions. Obfuscation tools and other software protection tools
inherently rely on diversification to minimize the learning capabilities
of attackers and to achieve stealthiness [88]. Microsoft diversifies the
Window’s system call numbering over time to prevent (malicious and
benign) software targeting ... . . . . . .APIs they do not want to keep backwards
compatible [67]. With the exception of the latter form of diversification,
the other forms can only provide strong protection if code is diversified,
i.e., if the diversification is not limited to changes in the embedded data.

3.7 Conclusions and Future Work

In this chapter we presented the ∆Breakpad approach to enable crash
reporting on diversified software. We demonstrated an open-source
implementation of co-designed compile-time software diversification,
and provided crash-reporting server support for the diversified bina-
ries. The source code of ∆Breakpad, as well as all scripts to repro-
duce the results presented, are available at https://github.com/csl-
ugent/delta-breakpad.

We validated the ∆Breakpad approach for applications on which
multiple fine-grained layout and offset diversifications are deployed. The
tool and diversification techniques require only minimal adaptations
to the build tool chain, and only a small price in storage space and
communication bandwidth is paid to support the approach. It is our
hopeful opinion that in providing a solution to an important issue faced
by diversified software, we ease its large-scale adoption.

Further improvements to our approach can be made with respect to
the employed diversification schemes. Currently these are rather simple,
and it is worthwhile to investigate whether more complex techniques—
such as techniques that can be deployed at install time, load time, or run
time, and techniques that can stop non-control data exploits—can be
supported and whether that will result in a larger overhead in terms of
∆data.

https://github.com/csl-ugent/delta-breakpad
https://github.com/csl-ugent/delta-breakpad


Chapter 4

Tightly-Coupled Self-Debugging

As debuggers are commonly used in ... . . . . . . . . . .MATE attacks, anti-debugging
techniques such as self-debugging have become a popular protection
method, as discussed in Section 2.3.3. All major ... . . . . .OSs only allow a single
debugger to attach to a process, and self-debugging works by occupying
that single available debugger seat with a custom self-debugger. When
the protected program is started it launches this self-debugger, which
then attaches to the program. With this setup in place, attackers can-
not attach their debugger to trace or tamper with the execution of the
program anymore. Here, we follow the ASPIRE attack model in the
assumption that it will be too much effort for attackers to introduce
multiple-debugger-per-process functionality [115].

A major shortcoming of existing self-debugging schemes, however,
is the simplicity of the self-debuggers. To ensure they cannot simply
be replaced by an attacker’s own debugger, they typically implement
an obfuscated, but relatively simple inter-process control flow transfer
mechanism, of which the implementation (typically based on simple
address translation table look-ups) is completely predetermined by the
developers of the protection tools. This feature, combined with the fact
that only simple binary code patching is performed to convert individual
control flow transfers to breakpoints, implies that it is relatively straight-
forward for knowledgeable hackers to inject a debugger-in-the-middle
that iteratively resets each breakpoint to its original instruction, thus
iteratively reconstructing and deobfuscating the unprotected program
to re-enable standard tracing and live debugging techniques. Because
the injection of breakpoints has left all other instructions in the program
in their exact original location, the reconstruction only requires the at-
tacker to flip some code bytes back to their original values, which can be
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determined from the simple ... . . . .I/O relation of the self-debugger, or even
be obtained statically from its address translation tables.

In this chapter, we present our improvements to the state of the art
in self-debugging. Relying on advanced binary rewriting techniques,
we propose to migrate whole chunks of functionality from the original
software to the self-debugger. This offers several advantages. First, the
... . . . .I/O behavior of the self-debugger is no longer predetermined: Every
time the self-debugger intervenes, it executes different functionality that
is not predetermined, but that can instead vary as much as functionality
in protected programs can vary. This makes the protection much more
resilient against automated analysis, deobfuscation, and decompilation.
Secondly, even if the attacker can figure out the control flow and the data
flow equivalent of the original program, it becomes much harder for an
attacker to undo the protection and to reconstruct that original program.
Combined, we believe these two strengths make it much harder for an
attacker to detach the self-debugger while maintaining a functioning
program to be traced or live-debugged.

Our contributions are the following:

• We present the design of a self-debugger that executes part of the
original program functionality to make it harder for an attacker
to detach the self-debugger and to deobfuscate the overall control
and data flow.

• We present an open-source prototype implementation and tool
support for protecting stand-alone program executables as well as
shared libraries.

• We discuss how to engineer the tool support to make it compatible
with other software protections.

• We evaluate the tools and prototype on complex, real-life security-
sensitive use cases, ranging from native libraries embedded in
Android APKs and invoked with the JNI interface, to native plug-
ins of the Android DRM server and the Android media server.

• We discuss the impact on attacker capabilities based on observa-
tions we made when professional penetration testers were hired to
attack the protected use cases.

The remainder of this chapter is structured as follows: in Section 4.1,
we discuss the overall design and applicability of our self-debugger
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approach. Section 4.2 then discusses the necessary tool support. In
Section 4.3, a number of implementation aspects are discussed in more
detail, after which a prototype implementation is evaluated in Section 4.4.
Additional practical considerations are discussed in Section 4.5, after
which Section 4.6 draws conclusions and briefly discusses future work.

4.1 Design

Figure 4.1 illustrates the basic concepts of our self-debugging scheme.
Our design, prototype implementation, and presentation target Linux
(and derivatives such as Android). However, to the best of our knowl-
edge, all aspects of the design are relevant and have direct counterparts
on Windows, BSD variants, and OS X.

On the left of Figure 4.1, an original, unprotected application is de-
picted, including a small .. . . . . . . .CFG fragment. The shown assembly code is
(pseudo) ARMv7 code [1]. This unprotected application is converted
into a protected application consisting of two parts: a debuggee that
corresponds mostly to the original application as shown in the middle
of the figure, and a debugger as shown on the right. Apart from some
new components injected into the debuggee and the debugger, the main
difference with the original application is that the ... . . . . . .CFG fragment has
been migrated from the application to the debugger. Our design and
current implementation support all single-entry, multiple-exit code frag-
ments that contain no inter-procedural control flow such as function
calls. The migration of such fragments is more than simple copying:
Memory references such as the LDR instruction need to be transformed
because the migrated code executing in the debugger’s address space
needs to access data that still resides in the debuggee’s address space.
All relevant components and transformations will be discussed in more
detail in later sections.

At run time, the operation of this protected application is as follows.
First, the debuggee is launched, as if it was the original application. A
newly injected initialization routine then forks off a new process for the
debugger, in which the debugger immediately attaches to the debuggee
process. When later during the program’s execution the entry point of
the migrated code fragment is reached, one possible flow of control in the
application follows the red arrows in Figure 4.1. In the application/de-
buggee, the exception-inducing instruction is executed and causes an
exception ( 1 ). The debugger is notified of this exception and handles
it in its debugger loop ( 2 ). Amongst others, the code in this loop is
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responsible for fetching the process state from the debuggee, looking
up the corresponding, migrated code fragment, and transferring control
( 3 ) to the entry point of that fragment. As stated, in that fragment mem-
ory accesses cannot be performed as is. Therefore, they are replaced by
invocations ( 4 ) of memory support functions ( 5 ) that access memory
in the debuggee’s address space. When an exit point ( 6 ) is eventually
reached in the migrated code fragment, control is transferred to the cor-
responding point in the debugger loop ( 7 ), which updates the state of
the debuggee with the data computed in the debugger, and ( 8 ) control
is transferred back to the debuggee. For code fragments with multiple
exits, such as the example in the figure, the control can be transferred
back to multiple continuation points in the debuggee. In this regard,
our debugger behaves in a more complex manner than existing self-
debuggers, that implement a one-to-one mapping between forward and
backward control flow transfers between debuggee and debugger. Even-
tually, when the application exits, the embedded finalization routine will
perform the necessary detaching operations.

It is important to note that this scheme cannot only be deployed to
protect executables (i.e., binaries with a main function and entry point),
but also to protect shared libraries. Just like executables, libraries can
contain initialization and finalization routines that are executed when
they are loaded or unloaded by the ... . .OS loader. At that time, all of the
necessary forking, attaching and detaching can be performed as well.

In the remainder of this chapter, we will write mostly about protect-
ing applications, but implicitly, we denote applications and libraries. The
only aspect specific to libraries is the need for proper initialization and
finalization of the debugger. This is necessary because it is not uncom-
mon for libraries to be loaded and unloaded multiple times within a
single execution of a program. For example, repetitive loading and un-
loading happens frequently for plug-ins of media players and browsers.
Furthermore, whereas main programs consist of only a single thread
when they are launched, at the point in time where they load and unload
libraries, they can easily consist of multiple threads. This complicates
the attaching/detaching of debuggers to libraries.
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4.2 Tool Support

Figure 4.2 depicts one possible conceptual tool flow. The main compo-
nents are discussed in the following sections.

4.2.1 Source Code Annotations

A number of options exist for determining the code fragments to be
migrated to the debugger. One, depicted in the figure—and also used
in our implementation—is to annotate source code with pragmas, com-
ments, or any other form of annotations that mark the beginning and
end of the code regions to be migrated to the debugger process. A simple
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grep suffices to extract annotations and their line numbers, and to store
that information in an annotations file. Alternative options would be
to list the procedures or source code files to be protected, or to collect
traces or profiles to select interesting fragments semi-automatically.

In that regard, it is important to note that the fragments to bemigrated
to the debugger should not necessarily be very hot fragments. To achieve
a strong attachment between the debuggee and the debugger, it suffices
to raise exceptions relatively frequently, but this does not need to be
on the hottest code paths. We will discuss good strategies to select
fragments in more detail later. Obviously, every raised exception will
introduce a significant amount of overhead (context switch, ptrace calls,
...). Consequently, it is important to minimize their number without
compromising the level of protection.

4.2.2 Standard Compilers and Tools

To deploy our self-debugging approach, any “standard” compiler can
be used: Our technique does not impose any restrictions on the code
generated by the compiler. In our experimental evaluation, we used
both GCC and LLVM, and we did not need to adapt or tune the code
generation.

One requirement, however, is that the compiler and the binary util-
ities (the assembler and linker) provide the link-time rewriter with
sufficiently accurate symbol and relocation information. This is required
to enable reliable, conservative link-time code analyses and transfor-
mations to implement the whole self-debugging scheme, including the
migration and transformation of the selected code fragments. Providing
sufficiently accurate information is certainly within reach for commonly
used tools. ARM’s proprietary compilers, e.g., have done so for a long
time by default, and for the GNU binutils, GCC, and LLVM, very simple
patches1 suffice to prevent those tools from performing overly aggressive
symbol relaxation and relocation simplification, and to force them to
insert mapping symbols to mark data in code. These requirements have
been documented before, and it has been shown that they suffice to
perform reliable, conservative link-time rewriting of code as complex
and unconventional as both CISC (x86) and RISC (ARMv7) versions
of the Linux kernel and C libraries, which are full of manually written
assembly code [104].

1Our patches are available at https://github.com/csl-ugent/toolchains.

https://github.com/csl-ugent/toolchains
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A large, generic part of the debugger—the mini-debugger—can be
precompiled with the standard compiler and then simply linked into
the application to be protected. Other parts, such as the debug loop’s
prologues and epilogues for each of the migrated fragments, are generated
by the link-time rewriter, as they are customized for each fragment.

To allow the link-time rewriter to identify the fragments that were
annotated in the source code, it suffices to pass it the line number in-
formation extracted from the source code files, and to let the compilers
generate object files with debug information. That debug information
thenmaps all addresses in the binary code to source line numbers, which
the rewriter can link to the line numbers from the annotations. To the
best of our knowledge, all compilers and binary utilities support the
generation of debug information.

4.2.3 Binaries, Libraries, and Processes

The link-time rewriter has two options to generate a protected appli-
cation. A first option is to generate two binaries, one for the applica-
tion/debuggee, and one for the debugger. From a security perspective,
this might be preferable, because the application semantics and its im-
plementation are then distributed over multiple binaries, which likely
makes it even harder for an attacker to undo the protection, i.e., to patch
the debuggee into the original application. This option does introduce
additional run-time overhead, however, as the launching of the debugger
then also requires loading the second binary.

The alternative option—that we use in our implementation—is to
embed all debuggee code and all debugger code into one binary. In that
case, simple forking will suffice to launch the debugger. Whether or
not, and to what extent, this eases attacks on the protection provided by
self-debugging is an open research question.

4.3 Implementation

4.3.1 Initialization & Finalization

We add an extra initialization routine to protected binaries. This routine
is invoked as soon as the binary has been loaded (because it is assigned
a high priority), after which all the other routines listed in the .init
section of the binary are executed. This initialization routine invokes
fork(), thus creating two processes called the parent and child [80].
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Once this routine is finished, the parent process will continue execution,
typically by invoking the next initialization routine.

Two options exist for assigning the debugger and debuggee roles:
After the fork, either the child process attaches to the parent process, or
vice versa. In the former case, the child becomes the debugger and the
parent becomes the debuggee, in the latter case the roles are obviously
reversed. The former option is highly preferred. The parent process
remains the main application process, and it keeps the same PID (Pro-
cess ID). This facilitates the continuing execution or use of all external
applications and inter-process communication channels that rely on the
original ... . . . .PID, e.g., because they were set up before loading a protected
library.

This scheme does come with its own problems, however. With
dlopen() and dlclose() [79], shared libraries can be loaded and un-
loaded at any moment during program execution. A potential problem,
thus, is that a protected shared library can be unloaded and loaded again
while the originally loaded and forked off debugger has not yet finished
its initialization. This can result in the simultaneous existence of two
debugger processes, both attempting (and one failing) to attach to the
debuggee. In order to avoid this situation, we block the execution of
the thread that called dlopen(). Thus, until has been allowed to con-
tinue, that thread cannot invoke dlclose() using the handle it got with
dlopen(), nor can it pass this handle to another thread. Blocking this
execution is implemented through an infinite loop in the debuggee’s
initialization routine, preventing the loading thread from exiting the
initialization routine before the debugger allows it to proceed.

The initialization routine also installs a finalization routine in the
debuggee. This routine does not do much. At program exit (or when the
shared library is unloaded) it simply informs the mini-debugger of this
fact by raising a SIGUSR1 signal, causing the mini-debugger to detach
from all the debuggee’s threads and to shut down the debugger process.

4.3.2 Multithreading Support

Attaching the debugger is not trivial, in particular in the case of protected
shared libraries. When a library is loaded, the application might consist
of several threads. Only one of them will execute the debuggee’s initial-
ization routine during its call to dlopen(). This is good, as only one fork
will be executed, but it also means that only one thread will enter the
routine’s infinite loop. The other threads in the debuggee process will
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continue running, and might create new threads at any point during the
execution of the debuggee’s initialization routine or of the debugger’s
initialization routine.

To ensure proper protection, the debugger should attach to every
thread in the debuggee process as part of its initialization. To ensure that
the debugger does not miss any threads created in the debuggee in the
meantime, we use the /proc/[pid]/task directory, which contains an
entry for every thread in a process [81]. The debugger process attaches
to all the threads by iterating over the entries in this directory, and by
continuing to iterate and attach until no new entries are found. Upon
attachment to a thread, which happens by means of a PTRACE_ATTACH
request, the thread is also stopped (and the debugger is notified of this
event by the ... . . .OS), meaning that from then on it can no longer spawn
new threads. For any program that spawns a finite number of threads,
the iterative procedure to attach to all threads is thus guaranteed to
terminate. Once all threads have been attached to, the infinite loop in
the debuggee is ended and its stopped threads are allowed to continue.

When additional threads are created later during program execution,
the debugger is automatically attached to them by the ... . . .OS, and it gets a
signal such that all the necessary bookkeeping can be performed.

4.3.3 Control Flow

Transforming the control flow in and out of the migrated code fragments
consists of several parts. We discuss the raising of exceptions to notify
the debugger, the transferring of the ID that informs the debugger about
the fragment it needs to execute, and the customized prologues and
epilogues that are added to every migrated code fragment.

Raising Exceptions

The notification of the debugger can happen through any instruction
that causes an exception to be raised. In our implementation, we use a
software breakpoint (i.e., a BKPT instruction on ARMv7) for simplicity.
Other, less conspicuous exceptions can also be used, such as those caused
by illegal or undefined instructions. When such instructions are reach-
able via direct control flow (direct branch or fall-through path), they can
of course be easily detected statically. However, when indirect control
flow transfers are used to jump to data in the code sections, and the data
bits correspond to an illegal or undefined instruction, static detection can



4.3. IMPLEMENTATION 75

be made much harder. Likewise, legal instructions that throw exceptions
only when their operands are “invalid” can be used to conceal the goal
of these instructions. Such instructions include division by zero, invalid
memory accesses (i.e., a segmentation fault), or the dereferencing of an
invalid pointer (resulting in a bus error).

Transferring IDs

We call the thread in the debuggee that raises an exception the requesting
thread, as it is essentially asking the debugger to execute some code
fragment.

The debugger, after being notified about the request by the ... . . .OS, needs
to figure out which fragment to execute. To enable this, the debuggee can
pass an ID of the fragment in a number of ways. One option is to simply
use the address of the exception-inducing instruction as an ID. Another
option is to pass the ID by placing it in a fixed register right before raising
the exception, or in a fixed memory location. In our implementation, we
used the latter option. As multiple threads in the debuggee can request a
different fragment concurrently, the memory location cannot be a global
location. Instead, it needs to be thread-local. As each thread has its own
stack, we opted to pass the fragment’s ID via the top of the stack of the
requesting thread.

Depending on the type of instruction used to raise the exception,
other methods can be envisioned as well. For example, the dividend
operand of a division (by zero) instruction could be used to pass the ID
as well.

Finally, many data obfuscation techniques [88] can be used to hide
the values of the passed IDs, thus complicating the reverse engineering
of the control flow in the original application.

Prologues and Epilogues

The debugger loop in the mini-debugger is responsible for fetching the
program state of the debuggee before a fragment is executed, and for
transferring it back after its execution. Standard ptrace functionality
is used to do this: With one ... . . . . .API call, the status of all registers in the
debuggee can be retrieved in a struct in the debugger. Likewise, one ... . . . . .API
call suffices to update all registers in the debuggee with the values in a
struct.
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For every migrated code fragment, the debug loop also contains a
custom prologue and epilogue to be executed before and after the code
fragment, respectively. The prologue loads the necessary values from
the struct into the debugger’s registers, the epilogue writes the necessary
values back into the struct. The prologue is customized in the sense that
it only loads the registers that are actually used in the fragment (the
so-called live-in registers). The epilogue only stores the values that are
live-out (i.e., that will be consumed in the debuggee) and that can have
been updated by the executed code fragment.

4.3.4 Memory Accesses

For every load or store operation in a migrated code fragment, an access
to the debuggee’s memory is needed. There exist multiple options to
implement such accesses.

The first is to simply use ptrace functionality: The debugger can
perform PTRACE_PEEKDATA and PTRACE_POKEDATA requests to read and
write in the debuggee’s address space. In this case, per word2 to be read
or written, a ptrace system call is needed, which results in a significant
overhead. Some recent Linux versions support wider accesses, but those
are not yet available everywhere, such as on Android.

The second option is to open the /proc/[pid]/mem file of the de-
buggee in the debugger, and then simply read or write in this file. This
is easier to implement, and wider data can be read or written with a
single system call, so often this method is faster. Writing to another
process’s /proc/[pid]/mem is not supported on every version of the Lin-
ux/Android kernels, however, so in our prototype write requests are still
implemented with the first option.

A third option builds on the second one: If the binary rewriter can
determine which memory pages will be accessed in a migrated code
fragment, the debug loop can actually copy those pages into the debugger
address space using the second option. The fragment in the debugger
then simply executes regular load and store operations to access the
copied pages, and after the fragment has executed, the updated pages
are copied back to the debuggee. This option can be faster if, e.g., the code
fragment contains a loop to access a buffer on the stack. Experiments we
conducted to compare the third option with the previous two options
revealed that this technique might be worthwhile for as few as 8 memory
accesses. We did not implement reliable support for it in our prototype,

2The ptrace word size depends on the processor architecture.
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however: A conservative link-time analysis for determining which pages
will be accessed by a code fragment remains future work at this point.

A fourth potential option is to adapt the debuggee, e.g., by providing
a custom heap memory management library (malloc, free, ...) such that
all allocated memory (or at least the heap) is allocated as shared mem-
ory between the debuggee and the debugger processes. Then the code
fragments in the debugger can access the data directly. Of course, the
fragments still need to be rewritten to include a translation of addresses
between the two address spaces, but likely the overhead of this option
can bemuch lower than the overhead of the other options. Implementing
this option and evaluating it remains future work at this point.

Security-wise, the different options will likely also have a different
impact, in the sense that they will impact the difficulty for an attacker
to reverse-engineer the original semantics of the program and to de-
construct the self-debugging version into an equivalent of the original
program. Without penetration tests, we are not in a position yet to make
strong statements in any one direction, however.

4.3.5 Combining Self-Debugging With Other Protections

To provide strong software protection against ... . . . . . . . . .MATE attacks, one pro-
tection technique does typically not suffice. For example, on top of
self-debugging, a good protection also requires obfuscation to prevent
static analysis, and anti-tampering techniques to prevent all kinds of at-
tacks. The binary rewriter that implements our self-debugging approach
also applies a number of other protections, including:

• Control flow obfuscations: the well-known obfuscations of opaque
predicates, control flow flattening, and branch functions [25, 78,
109].

• Code layout randomization: code from all functions is mingled
and the order and layout are randomized.

• Code mobility: a technique in which code fragments are removed
from the static binary and only downloaded, as so-called mobile
code, into the application at run time (see Chapter 5).

• Code guards: online and offline implementations of techniques in
which hashes are computed over the code in the process address
space to check that the code has not been altered.
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• Control flow integrity: a lightweight technique in which return ad-
dresses are checked to prevent the invocation of internal functions
from external code.

• Instruction set virtualization: a technique with which native code
is translated to bytecode that is interpreted by an embedded virtual
machine instead of executed natively.

Combining the self-debugging technique with all those protections
poses no problem in practice. In the link-time rewriter, it is not difficult
to determine a good order to perform the transformations for all of the
protections, and to prevent the deployment of multiple techniques on
the same code fragments when those techniques do not compose.

For example, in our prototype implementation we do not yet sup-
port mobile code in the debugger. Furthermore, the debugger needs
to know the exact continuation points to transfer control to in the de-
buggee. However, mobile code is relocated to randomized locations.
Consequently, at least for the time being, our prototype implementation
of self-debugging does not compose, on the same fragment, with code
mobility. Handling all protections correctly requires some bookkeeping,
but nothing complex.

As for the run-time behavior, the techniques compose as well. Multi-
ple techniques require initialization and finalization routines, but in the
debugger process we do not want to execute these routines for the other
protections. After all, that process should only be a debugger, and not
another client for code mobility or any other technique. To prevent the
other initialization routines from executing, the self-debugger routine is
given the highest priority. It is executed first when a binary is loaded,
and the debugger initialization routine implements in fact both the real
initialization, as well as the debug loop. The routine therefore never ends
(that is, as long as the finalization routine is not invoked), and hence
control is never transferred to the other routines that might be present
in the binary.

Finally, we should point out one limitation of our current design and
tool support. As presented, it can only be deployed once in a running
process. In other words, with the design and implementation details
presented in the remainder of this chapter, either the main application or
one of the shared libraries can be protected, but not more. This limitation
stems from the fact that in order to protect multiple libraries (including
possibly the main program), one debugger needs to contain, or have
at least have access to, the migrated code fragments and all auxiliary
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code and data of all protected libraries. The extensions required to our
scheme to support this are future work at this point.

4.4 Evaluation

4.4.1 Evaluation Platform

Our prototype implementation targets ARMv7 platforms. Concretely,
we targeted and extensively evaluated the implementation on Linux
3.15 and (unrooted) Android 4.3/4.4. We also checked whether the
techniques still work on the latest versions of Linux (4.7) and Android
(7.0), which is indeed the case.

Our testing hardware consist of several developer boards. For Linux,
we used a Panda Board featuring a single-core Texas InstrumentsOMAP4
processor, an Arndale Board featuring a double-core Samsung Exynos
processor, and a Boundary Devices Nitrogen6X/SABRE Lite Board fea-
turing a single-core Freescale i.MX6 processor. The latter board was also
used for the Android versions.

In our tool chain, we used GCC 4.8.1, LLVM 3.4, and GNU binutils
2.23. We compiled code with the following flags: -Os -march=armv7-a
-marm -mfloat-abi=softfp -mfpu=neon -msoft-float.

4.4.2 Use Cases

To evaluate the real-world potential of our self-debugging scheme, we de-
ployed it on three use cases that were developed independently in three
market leader companies. The three use cases were hence developed us-
ing different development approaches, different software architectures,
and even different build systems. Each use case consists of one or more
shared libraries to provide us with software of sufficient complexity to be
representative for real software products and with embedded, security-
sensitive assets representative of the assets (and corresponding security
requirements) in the companies’ real products. We chose the fragments
to migrate from the application into the debugger together with the
application architects and developers, and with security architects from
the companies.

Table 4.1 lists a number of features of the three use cases as an indi-
cation of their representativeness of real-world software. The number of
source code lines includes all the mentioned third-party libraries that are
compiled and statically linked into the shared libraries to be protected.
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use case developer src lines third-party libraries assets
DRM Nagravision 306.247 OpenSSL keys
software license manager SafeNet Germany 55.487 libtomcrypt, libtommath keys
OTP generator Gemalto 360.446 OpenSSL, libcurl seed, counter

Table 4.1: Feature matrix of the self-debugging use cases

This static linking is a security requirement, because dynamic linking
leaks too much symbolic information to attackers. Whereas the linked-in
libraries do not contain any assets, they operate on assets such as keys,
and the flow of control into them needs to be protected against reverse
engineering as well.

Digital Rights Management

The first use case consists of two plug-ins, written in C and C++ at Na-
gravision S.A., for the Android media framework and the Android DRM
framework. These libraries are necessary to obtain access to encrypted
movies and subsequently decrypt them. A video app programmed in
Java is used as a GUI to access the videos. This app communicates
with the mediaserver and DRM frameworks of Android, informing the
frameworks of the vendor whose plug-ins it requires. On demand, these
frameworks then load the plug-ins. Concretely, these servers are the
mediaserver and drmserver processes running on Android.

During our experiments and development, we observed several fea-
tures that make this use case a perfect stress test for our protection. First,
mediaserver is multi-threaded, and creates and kills new threads all the
time. Secondly, the plug-in libraries are loaded and unloaded frequently.
Sometimes the unloading is initiated even before the initialization of the
library is finished. Thirdly, as soon as the process crashes, a new instance
is launched. Sometimes this allows the Java video player to continue
functioning undisrupted, sometimes it does not. This makes debugging
the implementation of our technique even more complex than it already
is for simple applications. Fourthly, mediaserver and drmserver are
involved in frequent inter-process communications.

Software License Manager

The second use case is a software license manager that stores credentials
and controls access to licensed content and functionality, e.g., through
time-limited licenses, key-enabled licenses. This license manager is
programmed in C at SafeNet Germany GmbH (which has since been
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Transformation Overhead
Control Flow Switch 1.7 ms
Memory Read 3.4 µs
Memory Write 2.3 µs

Table 4.2: Overhead of self-debugging transformations

acquired by Gemalto S.A.). The library includes the JNI interface, and
is embedded in an Android app. This native library thus functions as a
license manager for a Java application. In this case, the Java application is
relatively simple: It is a riddle game of which the solutions are protected
by the license manager.

To test our self-debugger technique, this use case is also interesting.
In particular, the library is loaded into Android’s Dalvik execution envi-
ronment, which features multiple threads (such as for the JIT compiler,
garbage collector, ...), and over which we have absolutely no control [9].

Fortunately, a command-line version of the riddle game is also avail-
able, programmed in C. It uses the same library (except the JNIwrapper).
On top of providing an easier target to debug on our Android developer
boards, this command-line version can also be compiled for Linux. This
way, we could also test our implementation on Linux.

One-Time Password Generator

The third use case is a one-time password generator developed in C and
C++ at Gemalto S.A. In this case, the native library is responsible for
storing and accessing counters and seed values necessary to generate
one-time passwords, as well as for provisioning the initial counter and
seed values. This library is again embedded in a Java Android applica-
tion, which in this case simply provides GUI functionality on top of the
functionality in the library.

4.4.3 Correctness

We evaluated the technique for correctness through extensive testing,
first on toy examples and then on the three use cases. For the use cases,
we tested self-debugging combined with many different combinations
of the protections listed in Section 4.3.5. After a considerable amount of
engineering effort, we reached the status of reliable correct execution,
even in complex situations such as native code libraries loaded into
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Google’s Dalvik environment and plug-ins loaded into the Android
DRM and media servers. The latter server proved to be particularly
testing, as described in Section 4.4.2.

4.4.4 Execution Overhead

On the use cases, self-debugging did not introduce significant overhead.
This is due to the nature of the assets and code fragments protected with
the technique, which are not located on hot code paths.

To get an idea of the actual overhead, we also performed measure-
ments on micro-benchmarks. Our aim was to measure the overhead
introduced by our transformations, both on switching the control flow to
the debugger and back, and memory accesses from the debugger to the
debuggee. Each micro-benchmark migrated a little code fragment to the
debugger. For memory accesses this was a load from memory or a store
to memory that was executed in a loop (the entire loop being migrated).
For control flow the migrated code fragment consisted of a single in-
struction (an ADD instruction), which was contained in a loop that was
not migrated. As these transformations only replace a single instruction,
the original execution time of the micro-benchmarks is simply that of
the respective instructions (which is on the order of nanoseconds).

We tested these micro-benchmarks on our Linux board (see Sec-
tion 4.4.1), and made sure the loops had sufficiently high trip counts to
make the execution time measurable and to ensure the execution time of
the micro-benchmark was completely dominated by the transformation
we wanted to benchmark. Table 4.2 lists the results.

4.4.5 Security Analysis

We describe four categories of possible vectors of attack against our tech-
nique: circumventing or avoiding the migrated control flow fragments,
reverting the binary transformations, attacking the mini-debugger di-
rectly, and full system emulation.

Circumvention & Avoidance

One possible method of attack is to prevent the mini-debugger from ever
being invoked. This requires the attackers finding a path between an
entry point of the protected binary and the area they are interested in,
that does not contain any migrated control flow fragment. Attackers can
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then disable the mini-debugger, attach their own debugger, and debug
the found path without any consequences. Finding such a path will be
easier in shared libraries. Whereas an executable possesses a single entry
point, shared libraries usually have multiple.

Even if no unprotected path to an area of interest exists, attackers
can debug this area if they manage to disable the mini-debugger at the
right moment. That is, after the last migrated fragment but before the
area is entered. We will not go into the question of exactly how one
would deduce from the application’s execution that the right moment
for intervention has arrived. A plethora of side channels might be used
for this.

Reverting the Transformations

If the attacker simply reverts all the transformations that were applied
to migrate control flow fragments, the mini-debugger can be disabled
without problem. We differentiate between memory access transforma-
tions and control flow transformations. Both classes of transformations
need to be reverted for this attack to succeed, but reverting a control
flow transformation requires determining the address to which control
should be transferred. In the current implementation this can easily be
done through static analysis. For example, when a migrated fragment is
invoked one can simply find the destination address by looking up the
fragment ID in a data structure (see Section 4.3.3).

Attacking the Mini-Debugger

The mini-debugger itself obviously also forms an attack surface through
which the application can be compromised. As the child process contain-
ing the mini-debugger is not protected, an attacker can attach a debugger
to it and attempt to observe and manipulate the application through it.
Through observation of the mini-debugger the attacker can learn more
about the control and data flow of migrated fragments, which can be
used in the other attacks discussed previously.

Instead of attaching their own debugger to the application, attackers
can also subvert the mini-debugger for their own purposes. They can
attach their own debugger to the mini-debugger process and subvert its
ptrace privileges over the target application for their own purposes. Us-
ing this indirection, ptrace requests can be inserted into the application
to one’s heart desire.
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Another possibility would be for attackers to develop their own
debugger that incorporates the mini-debugger’s functionality and that
augments it with real debugging functionality. The mini-debugger could
then be safely disabled and replaced with this new debugger.

Full System Emulation

Obviously, full system emulation could also be used to trace and debug
our self-debugging applications. To the best of our knowledge, however,
and as confirmed to some extent by the penetration tests described below,
no such emulators are available for our targeted platform. On top of that,
analyzing and understanding the interaction between two processes,
with all kernel interactions in between, will be harder than debugging a
single program in isolation.

4.4.6 Penetration Tests

For each of the three Android use cases, professional penetration testers
were hired for several weeks to attack the assets in the code protected
with many techniques, as discussed in Section 4.3.5. Whereas all of
them tried to use tracing and live-debugging techniques, within the time
frame of the penetration tests none of them succeeded in collecting full
traces or attaching debuggers for live-debugging of the most interesting
code fragments being executed in situ. The latter of course followed
from the manual selection of migrated code fragments by the use case
developers, which ensured that migrated code fragments occur on all
execution paths to the relevant code fragments.

The evaluated tools that break on self-debugging libraries include:
gdb, valgrind used both as a stand-alone tracer tool and as a gdbserver
for gdb and IDA Pro, and QEMU [7, 36, 50, 89]. The fact that gdb breaks
is not surprising, as it depends on the ptrace interface to which access is
blocked by the self-debugging technique. Valgrind currently does not
support the BKPT instruction correctly, and it cannot emulate ptrace calls,
so it cannot emulate a self-debugging program correctly. The QEMU
version corresponding to our Android targets also does not support the
BKPT instruction correctly.

Other tracing tools, such as dtrace [55] and systemtap [38] were
not evaluated because they do not support our Android platform and
because they do not support interactive debugging anyway. Their tracing
and debug actions need to be scripted beforehand.
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Some penetration testers did succeed, however, in tracing and live-
debugging code out of context. They then loaded a library into a specially
crafted main program that directly invokes some of the library functions
in isolation. In essence, theywere able to create an execution path leading
to some of the interesting internal functions without first executing a
migrated fragment.

4.5 Practical Considerations

4.5.1 Fragment Selection

As explained in Section 4.1 the decision of what fragments are to be mi-
grated to the debugger rests with the programmer. This is an important
decision, as selecting the wrong fragments will result in a weakened pro-
tection, as was discussed in the previous section. Therefore, the location
of the selected fragments in the control flow should be right before and
inside all of the code regions an attacker might be interested in.

The fact that this selection is not straightforward was clear when the
experts chose the fragments to be migrated. For example, at some point
they mistakenly chose to migrate variable initialization code of which
the initial values later proved to be dead. While their choice still resulted
in control flow being transferred to the debugger, and control flow hence
being obfuscated, an attacker could relatively easily undo the protection
by rewriting the exception-inducing instruction, thus circumventing
many of the challenges that general code rewriting exhibits.

To hinder the transformations being reverted, a selected fragment
should contain sufficient code, and code that is sufficiently complex.
Some examples are control flow internal to the fragment, memory ac-
cesses, and complex computations.

4.5.2 Impact on Multithreading

While we did not observe this in our use cases and test programs, a
potential issue with our technique might be that the debugger process
is single-threaded, while the debuggee process is multi-threaded. Han-
dling all requests to execute migrated fragments in the debugger might
therefore become a bottleneck. Clearly, the solution to this problem is
engineering a more complex, multi-threaded mini-debugger.
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4.5.3 ... . . .OS Limitations

In the current implementation, the debugger forks from the protected
application and attaches to it using ptrace. However, the ptrace inter-
face is quite powerful, and over the past years a number of protections
placing restrictions on its use have been introduced and adopted by some
Linux distributions. When enabled, these protections can hinder our
technique or even make it impossible to use.

One of the protections introduced is ptrace_scope, which places
restrictions on attaching to another process [118]. In Ubuntu, e.g., the en-
abled restriction level allows a process to attach only to its children [103].
In our case this can still be overcome however, as we have the ability
to execute code in the protected application: During initialization the
application can explicitly allow the debugger process to attach (using
prctl(PR_SET_PTRACER, debugger, ...)).

Still, it is possible for Linux distributions to choose higher restriction
levels of ptrace_scope. In that case, our self-debugger will not work.

4.6 Conclusions and Future Work

We proposed to migrate code fragments from an application to a de-
bugger that serves as an anti-debugger. This way, we can make attacks
on self-debuggers significantly harder: The semantics of the code in
the debugger is not predetermined, and multiple control flow paths are
possible per invocation of the self-debugger.

Our open-source prototype implementation works on complex, real-
world use cases, as demonstrated by protecting complex shared libraries
for Android. We also discussed multiple implementation issues and
options. The source code can be found together with the entire ASPIRE
framework at https://github.com/aspire-fp7/framework. Specifi-
cally, the source code of the Diablo link-time rewriter is available at
https://github.com/csl-ugent/diablo, and the self-debugger source
code and associated Diablo support code is available at https://github.
com/csl-ugent/anti-debugging.

As for future work, a number of issues and avenues for further re-
search remain. First, an open issue is the development of support for
protecting multiple libraries that are loaded within the same application.
Secondly, the idea of reciprocal debugging shows promise. Here, not
only would the main application be debugged by the self-debugger, but

https://github.com/aspire-fp7/framework
https://github.com/csl-ugent/diablo
https://github.com/csl-ugent/anti-debugging
https://github.com/csl-ugent/anti-debugging
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it would also serve as a debugger to the self-debugger. We believe that
there are no technical issues that make reciprocal debugging impossible,
but a significant engineering effort is still required. Reciprocal debug-
ging would certainly make certain attack paths harder, e.g., by requiring
the inclusion of a full emulation step on the attack paths to simply ob-
serve the control flow implemented by the debugger. Thirdly, in the near
future we wish to investigate the impact of different implementation
aspects (such as ways to transfer and obfuscate fragment IDs) on the
effort required by attackers.
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Chapter 5

Native Code Mobility

One way of defending against ... . . . . . . . . . .MATE attackers is through the code mo-
bility protection technique, as discussed in Section 2.3.1. Code mobil-
ity is an online protection technique where parts of the program are
downloaded at run time from a trusted server. Through code mobility,
Collberg et al. [26, 27] and Falcarin et al. [40] proposed the continuous
replacement of Java and binary code, respectively. Here, the trusted
server periodically sends a set of new code blocks to the user’s untrusted
machine.

Existing implementations of code mobility either do not operate on
binary code, or do not allow selectively making only certain parts of
the program’s functionality mobile, hindering composability with other
protections at the binary level.

In this chapter, we present our code mobility framework. Through
source code annotations, developers can specify which parts of the pro-
gram are to be made mobile. The framework then splits off the pieces of
native code associated with these annotations, and forms mobile blocks
out of them. These blocks are then placed on a trusted server, in charge of
providing mobile code blocks to the untrusted client. To protect against
code analysis, the code mobility framework delivers native code to the
client at run time; the client application modifies its own code layout
to install the downloaded code blocks, in order to thwart static analysis
and increase the difficulty of dynamic analysis.

The code mobility framework has been developed within the AS-
PIRE project [102], and it is compliant to the software protection refer-
ence architecture designed in the project and documented in deliverable
D1.04 [116], which is available on the project website.
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Our main novel contributions are:

• A design and open-source prototype implementation with demon-
stration on standard Android code.

• Integration with compilers commonly used for native code devel-
opment, including in the Android NDK.

• Integration in a whole tool-flow (of the ASPIRE project) to ensure
as much composability as possible with other protections.

• Very fine-grained code blocks (albeit with a performance over-
head).

• A convenient way to specify and control deployment via source
code annotations.

• An evaluation on real networks, ranging from local networks, to
3G mobile networks.

The remainder of this chapter is structured as follows: in Section 5.1
we introduce the code mobility architecture and all its components, then
in Section 5.2 we describe how to create offset-independent mobile code.
In Section 5.3 we introduce the automated tool support to instrument
and split binary code in code blocks before run time; then, in Section 5.4,
we describe the performance analysis of our framework on different
network settings. In Section 5.5 we discuss some related work, while
Section 5.6 draws the conclusions and discusses future work.

5.1 Architecture

In the code mobility architecture we designed and the prototype tool
support we developed, a client application (which may also be a dy-
namically linked library) is stored on the user device as an incomplete
binary that does not contain all the application’s code. Two components,
Downloader and Binder, are introduced for this technique: They are
able, respectively, to fetch binary code blocks from a trusted server at
run time, and to patch these into the running process’ memory, in a
dynamically allocated memory area. These components are not part of
the original application and they have to be injected into the protected
version. This approach aims to mitigate reverse engineering: Instead of
preventing code analysis by making the code more complex, we make
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Figure 5.1: Code mobility high-level architecture

sure that the code is not available for static analysis on the client side as
long as possible, and deliver the necessary code only when it is actually
needed by the control flow. The code mobility framework’s architecture
is depicted in Figure 5.1: It can be seen as a dynamic binary obfuscation
approach, based on the deployment of an incomplete application. The
missing application code arrives from a trusted network entity (the code
mobility server) as a flow of mobile code blocks. Such blocks are fetched
by the Downloader component and arranged in memory by the Binder
component at run time, with an unpredictable memory layout. The
code mobility framework is compliant to the ASPIRE project reference
architecture [116], defining the ASPIRE portal—which acts as a common
entry point for all online protections developed in the ASPIRE project—
and the ACCL (ASPIRE Communication Control Logic) library in the
client host, which provides native socket support to Android apps.

Mobile code blocks coming from the code mobility server will not
be placed in a statically known location in the binary code section, but
will instead be placed in dynamically allocated memory. Consequently,
the location of the code blocks will not be fixed. This implies that the
mobile code needs to be PIC (Position-Independent Code) that can be
dynamically relocated, and independently so from the non-mobile part
of the client’s binary code. Thus, indirections need to be inserted in the
transformed code to deal with these variable code locations, both in the
static, non-mobile parts of the client application and in the mobile code.
Fortunately, only local code transformations are required to implement
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this: Instructions will be replaced with small code snippets that can deal
with the a priori unknown addresses at which the code has been loaded.

Our current design only supports mobile code blocks with a single
entry point. These can be entire functions or parts of their ... . . . . . . . .CFGs. This
significantly simplifies the implementation of the Binder and its book-
keeping data structures. We should also point out that we only make
code mobile. Data allocated statically in the binary’s data sections is left
static, including statically allocated data that is accessed by the mobile
code.

As an alternative to downloading entire mobile blocks—as done
in our current design—we could also store the mobile blocks in an en-
crypted manner in the binary, and only store a decryption key on the
server. When a mobile block is then needed, only the decryption key
needs to be downloaded from the server, instead of the complete mobile
block. The advantage of this approach is a smaller network overhead.
Security-wise there is no real difference to this approach: The mobile
block can be decrypted upon intercepting the decryption key from the
server, but then again intercepting the mobile block (or dumping it from
memory) is already a possibility. A disadvantage of this alternative ap-
proach is that storing the mobile blocks in the binary itself makes them
somewhat fixed. They can not be “updated” on the server if they do not
reside on it. The functionality to updating/overriding such fixed blocks
could be added to the Downloader, however, at the cost of increased
complexity and undoing the decrease in network overhead. Another
hybrid strategy would be to store only some blocks locally in the binary,
and for others to still require the full download from the server.

5.1.1 Binder

The client-side Binder component is in charge of invoking the Down-
loader when required. The Binder is invoked by the application when
the control flow reaches a mobile code block. If that block has not been
downloaded from the server yet, the Binder asks the Downloader to
retrieve the requested missing code block. Through the ... . . . . . . . .ACCL com-
munication library—implementing a socket ... . . . .API in native code—the
Downloader queries the code mobility server to download the mobile
block in question. After the block has been downloaded, the Binder
places it in memory and makes sure that it will not be downloaded
again, reducing the overhead effort introduced by the protection tech-
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Figure 5.2: Function call: before (a) and after (b) codemobility transformations

nique. Eventually the Binder redirects the control to the entry point of
the downloaded code, and program execution continues normally.

In the original client application, control flow transfers (such as
function calls) to mobile regions need to be transformed such that:

1. Upon the first execution of a call to a mobile region, the Binder and
Downloader components are properly invoked in order to obtain
the code from the server.

2. Upon subsequent calls to the same mobile region, the control is
immediately transferred to the already downloaded mobile code.

By avoiding going through the Binder again, the performance over-
head of mobile code can be limited. Figure 5.2(a) shows the original
control flow without mobile code: function f() is selected to become
mobile. In the transformed program, shown in Figure 5.2(b), our tools
inserted a look-up table with function pointers. Look-up table accesses
are depicted with dashed arrows whereas control flow transfers are de-
picted with regular arrows. The pointers in the look-up table either point
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Figure 5.3: Calling already downloaded mobile function f()

to stubs that invoke the Binder to start the mobile code downloading
process, or they point directly to the already downloaded code. All calls
to mobile functions are transformed into a code snippet consisting of a
table look-up and an execution control redirection to the address loaded
from the table.

Initially, when the called mobile function f() has not yet been down-
loaded and bound, the address in the look-up table is that of a stub that
invokes the Binder. This stub calls into the Binder, providing as argument
the index at which this stub is installed in the look-up table. This index is
then used as the identifier of the mobile function to be downloaded. Sub-
sequently, the Downloader component is invoked to retrieve the mobile
( ... . . . .PIC) version of the function—the mobile block—from the code mobility
server, and stores this block in a dynamically allocated buffer. Finally,
the Binder updates the entry in the pointer look-up table by overwriting
the address of the stub with the address of the downloaded code, after
which it redirects the control to this code, and normal code continues.

Subsequent calls to the already downloaded function f() then pro-
ceed as indicated in Figure 5.3. Since the Binder has already updated
the pointer in the look-up table at the used index to let it point to the
downloaded code, the inserted code snippet (in block A in Figure 5.3)
now loads this function pointer and thus transfers control immediately
to the previously downloaded mobile code. So for subsequent calls, the



5.1. ARCHITECTURE 95

overhead is limited to the table look-up, and the necessary spilling and
restoring of registers.

The Binder contains three tables: the GMRT (Global Mobile Redi-
rection table), a mutex table, and a table that stores whether a certain
mobile block is present or not (if it is not, the entry is zero). At program
startup, for a certain mobile block its ... . . . . . . . . .GMRT entry contains the address
of the associated stub, the mutex entry is initialized, and the entry in
the last table is zero. When control is transferred to the stub through
the ... . . . . . . . . . .GMRT, it will itself invoke the Binder with the index for the mobile
block as an argument. The Binder locks the corresponding mutex and
checks whether the block is present. This is very unlikely to happen,
unless another thread just downloaded it.

If the block is not present, the Binder instructs the Downloader to
download the block. It then writes the base address of the protected
binary onto the first four bytes of themobile block, maps all the pages the
block resides on as executable, backs up the current ... . . . . . . . . . .GMRT entry (which
is the address of the stub) to the last table, replaces the ... . . . . . . . . . .GMRT entry with
an address in the mobile block, and unlocks the mutex. As a small aside,
the locking and subsequent unlocking of a mutex is not actually done in
single-threaded applications, avoiding unnecessary cost.

5.1.2 Downloader

The Downloader is invoked by the Binder to request a specific mobile
code block (identified by an index)whenneeded by the client application.
After a mobile code block is correctly received a suitable heap-allocated
memory area is prepared, filled with mobile code, and passed back to
the Binder. The returned memory area must be allocated with respect to
a few constraints:

• It must be memory-page-aligned so that the Binder can apply the
proper access rights (execution) later.

• Every mobile block must be allocated in one or more dedicated
memory pages so that there are no access right conflicts: after a
page is declared as execution-only it should not be accessed in
write mode to avoid segmentation faults.

The first constraint is respected by using the posix_memalign system
call which allocates page-aligned memory. The latter is respected by
simply allocating the minimum number of memory pages able contain
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to the full mobile code block. These constraints result in an additional
overhead (in terms of time and memory consumption) because, after
receiving the buffer containing the mobile block, the Downloader must
copy it into a new memory-aligned one. This overhead could be avoided
introducing a new parameterization that instructs the ... . . . . . . . .ACCL .... . . . .API to allo-
cate page aligned buffers natively. Furthermore, reserving full memory
pages for singlemobile blocks leads to an additional overhead inmemory
allocation. This overhead can be computed as:

N∑
i=1

ps−mbsi

where N is the total number of mobile code blocks transferred over
time, ps is the single memory size, mbsi is the ith mobile block size. In
a scenario where one hundred blocks are extracted from the original
application the additional overhead is upper limited by the page size
times one hundred. As an example if the page size is 4KB the “wasted
memory” would be less than 400 KB. Tuning the amount of original
binary code made mobile can mitigate this.

5.1.3 Server-Side Components

This component is reachable by the client via a network link and is
assumed to be trustworthy. The code mobility server is the back end
invoked by the Downloader component on the client side. It is in charge
of delivering requested mobile code blocks by accessing a repository
using a given index.

5.2 Offset-Independent Mobile Code

When a mobile code block is mapped into the address space of the
binary, this is done on a randomized address on the heap because of
... . . . . . . . .ASLR. The statically allocated, non-mobile code and data of the binary
is randomized as well. This implies that the offset between the mobile
code block and the non-mobile code and data is unknown at compile
time. This differs from standard position-independent code, where the
offsets between elements in a statically allocated segment are still fixed.
Position-dependent code or ... . . . .PIC in the original binary therefore needs to
be rewritten into so-called offset-independent code.
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Figure 5.4: Example of offset-independent code
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On architectures like x86, this rewriting is straightforward, as one of
the registers is used (by convention) as a so-called GP (Global Pointer)
to the GOT (Global Offset Table) that contains pointers to all code and
data fragments of which the absolute address might be needed at some
point. On architectures like ARMv7, however, position-independent
code makes heavy use of the visible ... . . .PC register and of ... . .PC-relative ad-
dressing. So there is no fixed register holding a ... . . .GP, and ... . . . .PIC code is full
of ... . .PC-relative offsets.

Figure 5.4(a) shows an ARMv7 assembly ... . . . .PIC fragment. To load
the value at label .Ldata into memory with the instruction at .Lins2, a
... . . .PC-relative address stored in a so-called literal pool in the .text section
is first loaded into a register at .Lins1, and then used in the ... . .PC-relative
memory access at .Lins.1 All edges in the code fragments of Figure 5.4
correspond to offsets that are known at compile time. For that reason,
they can be computed by the linker or protection tool, and stored as
entries in the literal pools, or they can be encoded as immediate operands
of instructions.

Suppose that the three instructions in red become mobile. Fig-
ure 5.4(b) shows the transformed static ... . . . .PIC. In this example, we assume
that enough registers are available (like r6 in this fragment) to store
temporary values. If not, additional spill code would be needed. Instead
of the original code, the first two inserted instructions in red produce
the address of the ... . . . . . . . . . .GMRT. The next instruction loads the address of
the mobile block from its (fixed) index in the ... . . . . . . . . .GMRT, and then control
is transferred to that address. When the mobile code block is not yet
present, control will be transferred to a stub that invokes the Binder
with the requested block index instead. The Binder then invokes the
Downloader and overwrites the address of the stub in the ... . . . . . . . . . .GMRT with
that of the downloaded block.

Please notice that in the remaining static code of this example, there
is absolutely no need to place the instruction at .Lins4 right after the
inserted instructions, since the control transfer from the mobile code to
that instruction will happen indirectly. Besides hiding the mobile code,
this also opens up opportunities to obfuscate the control flow in the code
that remains static. When code mobility is combined with code layout
randomization in which independent code fragments (i.e., fragments
that do not need to be allocated consecutively because there are no fall-
through execution paths between the fragments) are reordered and

1The +8 in the ... . . .PC-relative address is due to the ARM specification that a used ... . .PC
equals the ... . . .PC of the instruction that uses it plus eight.
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spread throughout the whole text section, the fact that .Lins0 and .Lins4
belonged to the same basic block will no longer be apparent in the static
code.

Figure 5.4(c) shows the offset-independent mobile code block that
replaces the three instructions extracted from the static code. The single
entry point of this code block (i.e., the address that will be stored in the
... . . . . . . . . . .GMRT by the Binder) is actually the third word in this block (marked by
the .Lins1 label). The second word is an instruction that restores some
registers and the firstword is a kind of ... . . .GP. In our current implementation,
it points to the start of the statically allocated code and data of the binary
in memory, i.e., to the .Ltext label that marks the start of the .text section.
As this address is randomized by ... . . . . . . . .ASLR, it is unknown at compile time.
Therefore it is the Binder’s job to fill in this address in the blocks first
word at run time, i.e., when themobile code block is placed in the process’
memory space.

Rather than relying on the ... . .PC and a ... . . .PC-relative address loaded from
a literal pool to access statically allocated data as the instruction at .Lins2
did in the original code fragment, the rewritten code in Figure 5.4(c) uses
the .text ... . . .GP stored in the first word of the block, and an .Ltext-relative
address loaded from the literal pool. Likewise, to facilitate the jump
from the end of the mobile code back to .Lins4 in the static code, that
address of .Lins4 is computed using an .Ltext-relative address.

By combining the different redirection mechanisms discussed above,
it is possible to rewrite all direct references, be it in direct memory ac-
cesses or in direct control flow transfers from mobile to static code or
data, from static code to mobile code and even from mobile to mobile
code.

To handle indirect references from static data tomobile code, however,
we require another mechanism. This occurs when pointers to mobile
code are stored inside static data sections or when they are computed
on the fly, to be used in indirect control flow transfers to mobile code.
Fundamentally, the problem with such references is that while the origin
of the reference can accurately be identified (in source code or in binary
code, as we will discuss in the next section), the points of use of those
references cannot easily be identified accurately: Once some function
pointer has been computed and stored in memory, it is very hard if not
impossible in most programs (due to aliasing) to decide exactly where
that pointer will be used in an indirect transfer. Run-time solutions to
rewrite all potential indirect transfers where code pointers are used have
been proposed in the SecondWrite binary code rewriting system and
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in other designs [92], but all of them introduce a significant amount of
code and data bloat, which we consider unacceptable in many usage
scenarios.

Thus, rather than rewriting the code fragments that indirectly use
references to mobile code, we propose to limit code mobility to regions
that can only be reached through direct control flow transfers. In practice,
this is straightforward: When we detect that a region we want to make
mobile is accessed indirectly, an indirection pre-header is generated for
this region. This pre-header consists simply of a direct branch to the
original entry point of the region, which will later on be converted into
an indirect branch. It then suffices to replace all indirect references to
the region’s original entry point (i.e., statically allocated code pointers or
code pointer computations) by references to the indirection pre-header
instead. This pre-header then remains static, thus avoiding the problem
completely, while the entire region itself can still become mobile.

With the discussed transformation, the code mobility protection can
be applied widely. It is clear that rewriting mobile code references to
static code or data into offset-independent code can introduce significant
overhead, in particular when additional registers have to be freed. We
will evaluate this overhead in the evaluation section.

5.3 Automated Tool Support

It is not trivial to make the described form of code mobility generally ap-
plicable and usable for developers. They may not have the time to invest
in complex tools, and may have to operate in industrial environments
that put a lot of restrictions on the used compilers and development
tools.

In the ASPIRE project, we therefore designed a plugin-based tool
flow that allows a developer to annotate the source code that he wants
to make mobile, and that can be used in combination with open-source
compilers like LLVM and GCC, as well as with proprietary compilers
such as ARM RVDS. In this tool flow, we make use of three sets of tools,
which corresponds to the three phases depicted in Figure 5.5.
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Figure 5.5: Code mobility tool flow
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5.3.1 Specifying Mobile Regions

First, we use source code analysis tools based on TXL [31] to extract
annotations from the C source code.2 The annotations are inserted by
the programmer in the form of _Pragma directives as defined in the C
standard since C99. Listing 5.1 depicts an example. The ASPIRE begin
and ASPIRE end pragmas denote a code region to be protected, in this
case with the code mobility protection. Many other protections are also
supported by the full ASPIRE tool chain, but are out of scope. The
regions mark by the pragmas have to follow the scoping rules of { ... }
blocks in C. This is no problem, however, since C programmers are of
course very familiar with this scoping.

1 int f(x) {
2 int y,z,i;
3 y = 2 * x;
4 z = 0;
5

6 _Pragma("Aspire␣begin␣protection(mobility)");
7 for (i=0; i < y; i++)
8 z += x << i;
9 _Pragma("ASPIRE␣end");

10

11 z /= 2;
12 }

Listing 5.1: Annotation code example

The analysis tool extracts the annotations from preprocessed source
code, and produces a JSON file that identifies the regions by means of
their path and file names, their line numbers, the functions in which
the regions were found, as well as the protections that were specified
for each region. The tool also removes the ASPIRE pragmas, such that
compilers will not complain about unknown pragmas.

In addition, the user can edit the JSON file, for example to mark
additional functions that need to bemademobile. Wildcards can be used
to denotemultiple functions andmultiple files. This eases experimenting
with regions, for example to find a good balance between overhead and
protection. Moreover, it also allows the user to specify functions that
need to be made mobile that are not part of the original application.

2For the time being, we only support C code because the TXL grammar we use is
limited to C. C++ grammars exist as well, however, so this is no fundamental limitation.
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Such functions can be injected into the application to implement other
protections, such as code guards, by other plug-in components in a
protection tool flow. A range of such components is documented in some
of the public ASPIRE deliverables available on the ASPIRE website [102].

5.3.2 Compilation With Standard Compilers

In the second phase, the preprocessed code without the pragma is com-
piled, assembled, and linked into a binary. The compiler, assembler,
and linker are instructed to generate debug information in the produced
object files and final binary, as well as a linker map file. All compilers
and linkers we know can do so. The linker map and the debug informa-
tion, as well as sufficient relocation and symbol information, need to be
available in support of the third phase: a link-time rewriting process.

This requirement of sufficient relocation and symbol information
serves to allow the link-time rewriter to rewrite the generated code con-
servatively, i.e., without breaking the original program behavior. For ex-
ample, so-called mapping symbols are needed that identify data present
in the code sections. As another example, relocations should not be
relaxed because important information is lost during the relaxation pro-
cess. A standard linker does not suffer from that loss, but an advanced
link-time rewriter does. Some compilers and binary utilities already
produce sufficient information, such as ARM’s proprietary compilers.
Others, like GCC, LLVM, and GNU binutils do not produce it out of the
box. However, about 10 small patches—touching only few lines of code
in total—suffice to make them produce it.

5.3.3 Binary Code Rewriting

The third phase then consists of the actual extraction of mobile code
blocks and the rewriting of all code to insert the necessary indirections.
For this, we rely on the Diablo link-time rewriter from Ghent University
(http://diablo.elis.ugent.be) [104]. This rewriter has already been used
for many different applications, including fault injection mitigation; ob-
fuscation; kernel customization; memory safety; software diversity; and
program compaction, optimization, and instrumentation. In the ASPIRE
project and tool chain, it applies many protections besides code mobility,
including control flow obfuscation, code guards, .. . . . .ISA randomization,
and anti-debugging techniques.
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The internal program representation in Diablo is a WPCFG (Whole-
Program Control Flow Graph). This ... . . . . . . . . . . . .WPCFG includes the ... . . . . . . .CFGs of all
functions in the program, as well as call and return edges, and addi-
tional so-called hell nodes and hell edges that can conservatively model
unknown code—such as library code—and unknown (or at least not
precisely known) control flow, such as calls through function pointers.

Diablo first builds the ... . . . . . . . . . . . . .WPCFG of the original executable or library
by disassembling it with the help of the linker map file and the original
object files (and the relocation and symbol information contained in
them). After this, it annotates the nodes in the ... . . . . . . . . . . . .WPCFGwith line number
information that it extracts from the debug information.

In the ... . . . . . . . . . . . . .WPCFG, Diablo then identifies the regions specified in the
JSON annotations file. If a region has multiple entry points, it is split in
multiple single-entry regions. Moreover, if a region is reachable through
indirect control flow transfers such as calls through function pointers,
the already mentioned form of pre-headers is inserted in the code. At
that point, all regions are single-entry regions that are only entered
through direct control flow transfers. Diablo then rewrites all those
direct transfers into indirect ones that go through the Binder’s redirection
tables.

Next, the code inside each region is rewritten to replace all transfers
and references to other mobile code regions or to static code and data by
indirect, offset-independent references. Typically, the offset-independent
references require more instructions, and often they need to store tem-
porary (relative and absolute) addresses in registers. Diablo relies on
its bi-directional, inter-procedural, context-sensitive liveness analysis
to maximally find available registers in the code. If none are available
at some point, the necessary number of registers is freed by inserting
register spills to the stack.

The rewritten regions are then extracted from the ... . . . . . . . . . . . .WPCFG, and mi-
grated to separate ... . . . . . . . . . . . . . .WPCFGs, one per region. Entries and exits to and from
these separate ... . . . . . . . . . . . . . . .WPCFGs are modeled conservatively with hell edges, as
if each region corresponds to a library that can be called by unknown
application code. Once the original ... . . . . . . . . . . . .WPCFG has been split in multiple
ones this way, each of them can still be transformed independently: The
hell edges ensure that dependencies between the blocks are respected
automatically.

For each extracted region, multiple ... . . . . . . . . . . . . . .WPCFGs can actually be trans-
lated, which are then diversified with the stochastic diversification tech-
niques previously documented in literature [29, 30], including opaque
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predicates, branch functions, flattening, and code layout randomization.
Obviously, those protections can also be applied to the application code
that remains static, including the Binder and the Downloader.

5.3.4 Current Status and Limitations

Most Diablo transformations—including the aforementioned diversifica-
tion transformations—can handle both the fixed-width 32-bit ARM code
and mixed-width Thumb2 instruction sets of the ARMv7 architecture, as
well as combinations of these two sets. The current tool support for pro-
ducing offset-independent code, however, only handles the 32-bit ARM
subset. This is not a fundamental limitation, only a matter of engineering
effort.

Diablo in general can handle position-dependent as well as position-
independent code, and so can the mobile code support we implemented
on top of Diablo. There is one exception, however: The current tool
cannot yet convert position-dependent switch tables (a.k.a. branch ta-
bles) into position-independent or offset-independent ones. .. . . . . . . . . . . . . . .WPCFG
fragments containing such tables are therefore excluded. This is also a
matter of engineering effort, not a fundamental issue.

Thewhole tool flow, including the codemobility support, has already
been extensively tested with LLVM 3.3 and 3.4, as well as with GCC 4.8.1
and 4.6.4, and binutils 2.23.2 for ARMv7 software executed on Linaro
Linux, as well as with the Android NDK .... . . . .API level 18 (including the
already mentioned compilers and binutils) for software running on An-
droid JellyBean (4.3). Both stand-alone executables (from the SPEC2006
benchmark suite, as well as system utilities) as well as shared libraries
have been tested, including security-sensitive plug-ins for the Android
DRM Framework. In terms of structure and other requirements, such
as the use of GNU_STACK and GNU_RELRO segments, the generated
binaries conform to the strict security requirements of SELinux.

For the moment, mobile blocks can not share pages yet. This is
because when a new mobile block has to be loaded into memory, the
page(s) it would be placed on would have to be mapped first to non-
executable and then back to executable; in Android systems this would
require a rooted device. Next to that, in case the code from another
mobile block present on one of these pages is being executed in another
thread at the same moment, this thread would generate a segmentation
fault. A future solution for this problem would be to install a signal
handler for segmentation faults in the binary that suspends this thread
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Config Latency Block download Libquantum 50% mobile

Localhost
Average 0.12 9.36 369.37
Std Dev 0.03 6.63 66.28
Overhead +1.97%

LAN
Average 0.32 6.98 370.45
Std Dev 0.02 1.46 65.74
Overhead +2.27%

WiFi
Average 3.43 29.64 401.56
Std Dev 2.81 24.49 68.36
Overhead +10.86%

3G
Average 134.27 228.87 659.54
Std Dev 119.58 154.44 173.42
Overhead +82.08%

Table 5.1: Summary of performance overhead (in ms)

and resumes it when the page is executable again. For this same reason
there is also no support yet for removing mobile blocks from memory,
but this feature can eventually be added with minimal effort.

5.3.5 Testing

To ensure rewriting binaries with Diablo and splitting off mobile blocks
didn’t introduce any bugs, we verified whether rewritten applications
still work correctly. For this purpose, a stub Downloader without an
actual network connection was used, which simply maps the requested
mobile block from the disk. This testing was done for both ARM Linux
and Android, using Position Independent Executables. The applications
used are those from the SPEC CPU 2006 benchmark. The testing was
done by simply making mobile every named function present in the
binary (if that was possible). As an example, more than 3000 functions
were made mobile for the 403.gcc benchmark.

5.4 Performance Analysis

Our performance analysis was carried out for our code mobility frame-
work on three case studies written in the C and C++ languages. These
three, taken from the SPEC CPU 2006 benchmarks, were libquantum,
namd, and milc. Tests were performed on a SABRE Lite i.MX6 board
with a Quad-Core ARM Cortex A9 processor at 1 GHz clock speed, with
1 GByte of 64-bit wide DDR3 at 532 MHz.
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To evaluate the steady-state overhead of the mobile code transfor-
mations, i.e., the performance overhead on an application in which all
executed mobile code blocks have already been downloaded, we used a
customized version of Diablo. It transforms the applications by applying
the ... . . . . . . . . .GMRT indirection and bymaking all mobile code offset-independent
as described in Section 5.2, but it leaves the mobile code blocks in the
binary’s static code sections, thus avoiding the dumping of the mobile
blocks.

To evaluate the latency that downloading the blocks might incur, we
tested four different network scenarios: Localhost, LAN, WiFi, and 3G.
In the localhost scenario, all components were configured such that both
themobility server and client reside on the same test virtual machine: All
communications took place locally, in order to exclude the influence of
transmission delays from collected data, and in order to have a reference
for the other configurations.

In the LAN configuration, we tested the code on a 100 Mbps wired
network; in the WiFi configuration we tested the code on a 54 Mbps
wireless network, while in the 3G scenario we tested it on a HSDPA
mobile network.

We measured the latency, i.e. the time required to establish a new
TCP connection, whenever a new code block has to be downloaded;
then we calculated the block download time to measure the time needed to
download a mobile block on different network configurations. For the
block download we made an arbitrary function mobile and measured
the time needed to transfer it from the server to the client. The chosen
function has a code size of 412 bytes.

Each experiment was repeated 500 times to collect data and we calcu-
lated the average and standard deviation for both the latency and block
download time (see Table 5.1); for the latency experiments we only ran
the code 100 times. The last column of Table 5.1 represents the total
execution time of a mobile version of the libquantum application. For
this experiment, we selected a hot function that by itself represents circa
50% of the executed operations, and made this function mobile.

Since most of the overhead comes from downloading blocks, which
happens only once per mobile code block in our current implementation,
and because our Android boards are relatively slow, we used the test
SPEC inputs in our experiments. As expected, the worst overhead (82%)
is found in case of mobile network connection while in a LAN scenario
the overhead is as low as 2%.
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Execution time Average Std Dev Overhead
libquantum
original 362.23 63.11
20% 363.18 67.93 +0.26%
50% 355.73 67.14 -1.80%
100% 394.80 62.06 +8.99%
milc

original 85,697.45 29.98
20% 85,417.24 46.73 -0.33%
50% 85,985.24 46.73 +0.34%
100% 88,557.82 133.17 +3.34%
namd
original 92,729.70 107.89
20% 93,403.56 124.05 +0.73%
50% 94,383.00 115.48 +1.78%
100% 95,503.73 119.98 +2.99%

Table 5.2: Summary of computational overhead (in ms)

Table 5.2 shows the performance once all mobile code blocks have
been downloaded, i.e., when the redirection via the Binder’s ... . . . . . . . . . .GMRT is
applied to all the fragments of an application.

For each benchmark application scenario the average total execution
time and its standard deviation are provided, overhead is computed as
the increment of execution time with respect to the original application,
where no functions have been instrumented to become mobile. Each
row indicates a different experiment with a significant percentage (20%,
50%, and 100%) of indirection/mobility, evaluated as the number of
instructions executed in mobile functions over total number of executed
instructions.

In both the 20% and 50% coverage example we can see that the over-
head is very low and sometimes even less than zero. This is due to
the optimizations made to the code by Diablo. Only when 100% of the
application’s functions are made “mobile”, forcing the indirection, do
we see a significant overhead occurring.
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5.5 Related Work

Different online protections use dynamic code replacement to periodi-
cally replace the copy of the program running on the untrusted machine
with the goal of limiting the amount of time that the attacker has to re-
verse engineer the application. The replacementmay be implemented for
the functional part of the program, and/or for the protection techniques
used to protect it [64]. Collberg et al. [26, 27] and Falcarin et al. [40] pro-
posed the continuous replacement of Java and binary code respectively,
in which the remote trusted entity frequently sends a set of new code
fragments to the untrusted machine. The technique of Collberg et al. has
some limitations as it relies on CIL (Common Intermediate Language),
however. This restricts the scenarios in which the technique is usable
(e.g., not with dynamically linked libraries), their composability with
other protections, and the granularity of the code blocks. Although the
technique of Falcarin et al. operates on binary code, the code blocks
are generated in a rather arbitrary manner: The binary’s .text section
is simply chopped into a set of blocks. This means one function might
cover multiple blocks, and one block might contain pieces of multiple
functions. Consequently, the technique does not allow selectively mak-
ing only certain parts of the program’s functionality mobile, hindering
composability with other protections at the binary level.

Previous work in Java implemented dynamic replacement of pro-
tection code implementing code mobility features on top of dynamic
aspect-oriented platforms [39] or by ad-hoc JVM extensions [96].

5.6 Conclusions and Future Work

The main contribution of our work is the definition of a new software
protection relying on code mobility and the full automation of mobile
code block generation. Our solution shows that splitting a program
into code blocks transmitted via network by a trusted server is a suit-
able and low-cost software protection that can be useful in defending
software programs from reverse engineering. Our protection creates
problems for common reverse engineering tools and makes the code
comprehension task more difficult for the attacker. The source code
can be found together with the entire ASPIRE framework at https:
//github.com/aspire-fp7/framework.

The proposed solution provides stronger protection than the one
described in previous work. First of all, the addresses at which the

https://github.com/aspire-fp7/framework
https://github.com/aspire-fp7/framework
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mobile code is downloaded will differ from one run of the program to
another. Thismakes all kinds of dynamic attacksmore difficult. Secondly,
almost all the necessary support is already available to free the allocated
memory of mobile code blocks, and to restore the addresses in the look-
up table to their original values, i.e., the stub addresses. Once this is
implemented, it will allow us to make sure that not all mobile code is
present at once, and to let multiple different mobile code blocks occupy
the same memory addresses during a single run of a program. The fact
that addresses in the program’s address space then no longer map onto
instructions in a one-to-one mapping also complicates many dynamic
and hybrid attacks. This is because many tools such as IDA Pro are
engineered around the central notion that every code byte and address
corresponds to at most one instruction.

Further research will be devoted to integrate code mobility with
remote attestation in order to integrate tamper-detection techniques,
improving the level of protection. Another line of research we want
to explore is the combination of code mobility and software diversity.
Software diversity creates many different copies from an initial version
of a program: Each copy of the protected program is different in its
binary shape, but is functionally equivalent to other copies [73]. Thus,
attacks designed to work with one version might not work with other
customized versions. Along with parameterizing the binary layout (di-
versity in space) we will explore how to extend it with diversity in time,
by making code mobility even more configurable, by randomizing the
binary structure [110] and parameterizing the number and size of code
blocks and their duration in the client code before expiring and being
replaced by a new version.



Chapter 6

Native Code Renewability

. . . . . . . . . . . .MATE attackers use debuggers, emulators, custom .... . . . .OSs, analysis tools,
etc. to reverse engineer or tamper with software distributed by providers
of software, service, and content (as discussed in Section 2.2.3). Software
protection techniques aim at protecting the integrity and confidentiality
of the provider’s assets in the software by making it harder to reverse
engineer and tamperwith [41, 88]. Each protection technique only affects
a small set of attack vectors, and applying only a few will merely divert
the attacker’s attention to the remaining unprotected attack vectors. Thus,
multiple techniques need to be combined to ensure all these possible
paths-of-least-resistance are hardened.

Overall, protections aim for (i) increasing the effort needed to identify
successful attack vectors; (ii) increasing the effort needed to manually
exploit these attack vectors (iii) increasing the effort needed to automate
and scale-up their exploitation; (iv) minimizing the number of instances
on which automated attacks can be deployed; (v) reducing the window
of opportunity for generating income from an attack.

Protections hence need to be diversified (as we discussed in Sec-
tion 2.3.4), such that they maintain a level of resilience and different
versions can be generated of the same functionality. Defenders need a
mechanism to renew (i.e., update) assets and protections in the field
such that the attack vector identification has to be re-done frequently, the
value of assets decreases rapidly, and the protections’ behavior varies
over time. If temporal variation is unpredictable, attackers always need
to take into account all protections to remain undetected and successful.
This furthermore means that not all protections need to be active at the
same time, which can allow the run-time overhead to remain acceptable.
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This chapter presents the ASPIRE renewability framework for de-
livering renewability to the native executables and libraries that often
implement the security-sensitive functionality of mobile applications.
Our framework leverages existing diversity techniques [73] and exploits
renewability opportunities for protection techniques to generate the re-
quired variation. The protection techniques used were developed in the
context of the ASPIRE project, by various partners and separately from
this framework. The renewability framework builds on the code mobility
technique (presented in Chapter 5). Our main contributions are:

• The framework architecture to support many forms of software
renewability.

• The supporting tool flow.
• Concrete deployments of the framework that mitigate specific at-

tacks by making existing protections renewable.
• The evaluation of a prototype implementation.

Section 6.1 discusses the ... . . . . . . . . . .MATE attack model. Section 6.2 presents
the overall framework design and architecture, after which Sections 6.3
and 6.4 discuss specific features. Section 6.5 presents the tool flow to
support automated deployment of the framework. Section 6.6 discusses
concrete uses of the framework to mitigate a variety of concrete ... . . . . . . . . . .MATE
attack steps. Section 6.7 evaluates the proposed renewability framework
and the prototype implementation in terms of robustness, overhead, and
scalability. After related work is discussed in Section 6.8, conclusions
are drawn and future work is discussed in Section 6.9.

6.1 Attack Model

We aim to protect software against ... . . . . . . . . .MATE attacks. In their labs, .. . . . . . . . . . . .MATE
attackers have full access to—and full control over—the software under
attack, as well as over the system on which the software runs. They can
use static analysis tools, emulators, debuggers, custom .... . . .OSs and all kinds
of other hacking tools. The attacks are looking to break the integrity and
confidentiality requirements of assets, e.g., to steal keys or intellectual
property, and to break license checks. They do so by means of reverse
engineering and by tampering with the code and its execution.

We focus on mobile applications distributed by providers of con-
tent, software, and services. Often, their GUI parts are implemented in
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managed languages such as Java. Because of the ease with which, e.g.,
Java bytecode can be reverse-engineered, and because of performance
concerns, the security-sensitive assets are typically still implemented
in dynamically linked, native libraries that are packaged with, e.g., the
Java apps. The software under attack therefore consists of native binary
files (this includes both dynamically linked libraries as well as stand-
alone executables). Because of the economic value of the assets, we
assume software protection techniques are deployed in and on the native
code [88].

We only target always-online applications, such as video streaming
apps or edge apps that connect to cloud servers. While this is a limitation,
the omnipresence of wireless networks (4G, 5G, WiFi) has resulted in a
big enough market to develop protections that exploit the always-online
feature.

Our protections target economically driven attackers. We aim at
increasing their attack investment cost, at lowering their profit, and at
tilting the balance between the two. The protection is effective when the
attackers expect a negative return on investment before they even start
the attack or while they are still pursuing it, as well as when they expect
a higher return on investment from attacking other providers’ software.
The protections then stopped the attackers before they had a chance to
succeed. Even if the attackers succeeded, though, the protections can
have delayed them enough for the provider to make a healthy profit
of the assets. In that case as well, the protections can be considered
successful.

In their lab, .. . . . . . . . . . .MATE attackers execute an attack strategy and a series
of attack steps. The strategy is adapted on the fly, based on: the results
of previous attack steps; hypotheses that the attackers formulate and
test regarding assets, deployed protections, other relevant features of
the software under attack (such as the locations of relevant code and
data); and the perceived path of least resistance. With the perceived
path of least resistance, we mean the sequence of future attack steps that
the ... . . . . . . . . .MATE attackers consider the most efficient and effective to pursue
given their expertise, skills, and tool availability. We refer to existing
literature for more information and models of the attack processes as
obtained through empirical experiments with various kinds of attackers
on various kinds of assets [16]. In the context of this work, one im-
portant aspect to point out is that in the eyes of ... . . . . . . . . .MATE attackers, many
seemingly uninteresting artifacts of software (system calls, control flow
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structures, ...) are in fact interesting, because they can serve as hooks for
the attackers to guide their search to the really interesting code.

To be effective, protections should cover as many attack paths as
possible that might be paths-of-least-resistance for certain attackers. The
protections can achieve this by making the individual attack steps on
the paths more expensive or time-consuming, by requiring extra attack
steps, or by preventing certain attack steps and the automation thereof.
Section 6.6 will discuss several concrete attack steps against which pro-
tections exist that can be made more effective by making them renewable
with the presented framework and architecture. In general, these steps
are attack vector identification and attack vector exploitation steps that
require a certain amount of repeatability, such as the iterative develop-
ment and later use of customized scripts that work well as long as the
software they operate on remains the same.

It is commonly accepted that sufficient protection can only be
achieved by combining many protections in a layered fashion. The
deployed protections then become assets themselves, protecting the
original assets, the artifacts that attackers can hook onto, and each other.
The value of the proposed renewability framework and architecture
hence cannot be judged in isolation. The supported forms of renewa-
bility are supposed to be combined with other protections that protect
against additional attack vectors, and that protect the components of the
renewability implementation. The communication to a secure server
to download renewed assets and protections, for instance, is supposed
to be protected by sufficiently strong cryptography, of which the keys
are protected through white-box cryptography, of which the code is
obfuscated to prevent static reverse engineering, and anti-debugging
techniques to protect against dynamic reverse engineering. Similarly,
remote attestation is supposed to be used for hampering replay at-
tacks, i.e., for checking that a client application actually executes freshly
downloaded code rather than old copies stored on disk by an attacker.

In the ASPIRE project, we reached the necessary composability of
renewability with other protections in an open-sourced protection tool
chain [5]. The renewability framework and architecture presented here
are only one of several novel aspects of that tool chain. Composability of
all kinds of protections in the tool chain is out of scope of our work.

Our ... . . . . . . . . . .MATE attack model neglects hardware-based protections. Off-
the-shelf processors offer limited protection against ... . . . . . . . . .MATE attacks. SGX
enclaves can leak information in contexts similar to ... . . . . . . . . . .MATE attacks [10,
76]. Furthermore, they are restricted in their interaction with outside



6.2. ARCHITECTURE 115

components, so they cannot protect all code. TrustZone [2] is only ef-
fective in well-configured systems. In a lab, a ... . . . . . . . . . .MATE attacker can easily
disable the protection. Furthermore, many lower-end devices lack hard-
ware protection. For those, software-only protection is the only available
option. Moreover, hardware-based protection is considered a risk by
some, because it is expensive and at the same time not renewable [56].
The reason for this is that when a hardware defensemechanism is broken
at some point, e.g., because implementation bugs are discovered, it is
typically very hard—if not impossible—to fix it, so all systems relying
on that hardware are vulnerable from then on. Software renewability
offers a complementary solution for such scenarios.

6.2 Architecture

Figure 6.1 visualizes the ASPIRE renewability architecture. It is based
on code and data mobility, which builds on the existing concept of code
mobility (as presented in Chapter 5). From the binary file of a client app
or library that needs to be protected, parts of the statically allocated code
and data sections are extracted. These parts correspond to code that will
need to be renewed dynamically, i.e., when the app or library is actually
running. By simply removing this code and data, it is already protected
against purely static ... . . . . . . . . .MATE attacks. The code and static data (Client
Application Code and Data in Figure 6.1) that remains in the binary is
extended with support code: Communication Logic, a Downloader, and
a Binder.

The Communication Logic implements protection-agnostic commu-
nication and protocols to the Server Portal. Its prototype implementa-
tion offers a simple request protocol and a WebSockets protocol [63]
for protections that need occasional connections and/or server-initiated
communications and a persistent connection. (Replacing WebSockets
with a more secure implementation is orthogonal to this work.)

The Downloader implements the communication. Upon requests
from the Binder, it connects to the Mobility Server to download mobile
code and data blocks. The downloaded blocks are then mapped at
randomized locations on the heap of the running client. In basic code
mobility, these blocks correspond to individual code fragments extracted
from the statically allocated code of the protected app.

The Binder initiates the download requests on demand and ensures
that all control transfers and accesses to and from downloaded code and
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data execute correctly. Each transfer into a mobile block is redirected via
a stub that transfers control to the block’s address, which it finds in a
... . . . . . . . . . .GMRT. Until a block has been downloaded, the found address is that
of another stub that invokes the Downloader with the correct input and
that performs the necessary allocation and bookkeeping. This includes
replacing the stub’s address with the block’s address in the ... . . . . . . . . .GMRT, and
then continuing execution at the entry of the block. All transfers out of
a block are transformed into offset-independent code by adding a level of
indirection (as discussed in Section 5.2). single-entry code regions.

In basic code mobility, a downloaded mobile block remains mapped
on the heap of the running process until it halts. To support advanced
forms of renewability, we extended the Binder to support the flushing of
mapped blocks and subsequent re-downloading of renewed, different
versions of those blocks. We also extended it to support mobile data,
which is necessary to support several interesting forms of renewability
that will be discussed later.

The protection-agnostic ASPIRE Server Portal forwards communica-
tions between clients protected with (multiple) online protections and
the corresponding services. In our prototype, it also supports client-
server code splitting [15] and remote attestation techniques [105].

The RenewabilityManager selectswhichmobile code and data blocks
need to be delivered to a running client. By varying the mobile block
versions that are delivered to different clients and at different times,
the assets and protections implemented by that mobile code and data
can be renewed. The Mobility Server takes care of the actual delivery
and interaction with the Downloader in stateless communication: The
Server does not keep track of existing sessions with clients for the sake of
scalability; it just serves the right block whenever a request arrives from
one of the clients, based on the policy implemented by the Manager.

The mobile code and data blocks are stored in a database (DB). That
Diversified Block DB can hold multiple, diversified versions of each
block. For most forms of renewability, the different mobile blocks and
the different versions thereof, are independent of each other. This is
the case because either all versions of a block implement exactly the
same semantics, or because one block’s semantics is independent of the
other blocks’ semantics. For some forms of renewability, however, there
may exist dependencies between the blocks. Some interesting cases are
discussed later.

Different server-side code generators (Renewable Block Engines)
produce diversified mobile blocks. Depending on the renewability poli-
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cies, these generators can generate blocks a priori or on demand. For
example, in case a policy only aims at delivering different versions of a
block with the exact same semantics, the DB can be populated a priori. If
specific versions need to be generated to react to events, they can instead
be generated on demand. Obviously, if the event to react to is an actual
request from a running app, the on-demand generation will result in a
higher response time.

The renewable code engines are application-dependent, as they gen-
erate mobile blocks matching the code and data fragments that were
extracted from the static binary of the client software. Section 6.5 dis-
cusses how these engines are generated. Obviously, but not drawn in
Figure 6.1 to keep it simple, the RenewabilityManager also has to interact
with the code engines to know what code is in the DB, and to trigger
on-demand generation of blocks.

Furthermore, the Renewability Manager can interact with other pro-
tection servers. Figure 6.1 includes an example Remote Attestation Ser-
vice. That interaction can be exploited in two ways. First, the renewa-
bility policy itself can interact with the other protection server. In the
case of remote attestation, the interactions can involve notifications of
failed attestations, and communication about the mobile blocks that
were delivered to the client such that the remote attestation can attest
them. Secondly, the other online protection might also have client-side
protection components, such as specific hash functions used in remote
attestation code guards that need to be delivered as mobile blocks via
the Renewability Manager. Figure 6.1 shows this for mobile remote at-
testation blocks. Note that the difference between the mobile remote
attestation Code blocks and the Code and Data blocks in the Diversified
Block DB is that the former are application-independent components
of a deployed protection, while the latter implement original client-side
functionality.

6.3 Integrating Renewability into Existing Applica-
tions

In order to integrate renewability into existing applications, there are two
choices that need to be made: (1) where and how decisions will be made
to renew blocks, and (2) decide how these decisions will be communi-
cated with the client application. We call the former the renewability
policies, and the latter the renewability communication design. We will
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now discuss the spectrum of options and trade-offs that can be made for
both kinds of policy.

6.3.1 Renewability Policies

Renewability policies define when a client needs to discard and replace
downloaded mobile blocks with renewed ones. The decision to renew
a block can either be made server-side, or it can be made in the client
itself. When considering client-side decisions, these can be made either
without external inputs (the logic is set in stone), or it can be that the
application implements a policy that has been dictated to it by the Re-
newability Server. Either way, a ... . . . . . . . . .MATE attacker might be able to learn or
even subvert the renewability policies. A major advantage of server-side
decisions, is that the client then only learns about the concrete decisions
taken by a policy (i.e., the flushing commands), and not about the rules
that lead to these decisions. On top of that, a persistent, server-initiated
connection to pass policy decisions to the client enables dynamic poli-
cies that can be adapted on the fly. A compromise between these two
approaches would be to send a policy description to the client with each
served block. A policy would then be immutable in between the deliv-
ery of blocks. In the rest of this section we will consider server-based
renewability policies.

When the renewability policy is implemented on the server, we can
either make this an application-agnostic decoupled policy, or a coupled
policy that is tightly integrated with the Original Application Server.

In the case of decoupled policies, no changes need to be made to the
application source code when compared to the original, non-renewable
ASPIRE architecture: It suffices to add annotations in the source code.
The decision of whether and when to renew certain blocks is made
completely independently from the application, by the server-side Re-
newability Manager. When this component decides to renew a certain
block in a certain application instance, it sends a flushing command to
that application instance.

Implementing policies in a decoupled manner on the renewability
server somewhat restricts the manner in which the renewability policies
can react to events occurring in the protected application. We would
however argue that there is still quite a lot of leeway left to react: We
can compose different (application-agnostic) protection techniques and
change the policies based on the state and observations of these other
protection techniques. For example, in our prototype implementation,
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the integrity violations that are observed by the remote attestation com-
ponent are passed on to the renewability server, which changes its policy
based on these observations. Several reactions are possible: the Mobility
Server can stop serving blocks, the client can be notified in the next
communication through the ASPIRE Server Portal, or the Original Appli-
cation Server can be informed that it should stop delivering content [105].
Furthermore, it has already been demonstrated in the ASPIRE project
that other protections, such as client-server code splitting, can be used to
let a protection server keep track of different events in the client [15, 105].
Decoupled policies thus lead to a clear separation of concerns.

Alternatively, in a coupled policy, the (server-side) application logic
is tightly integrated with the renewability policy. The decisions of which
(specific instances of) blocks to flush can be based explicitly on the state
in which a specific client happens to be, and can be made to coincide
with other actions that are taken in the application server. For example,
in the case of a streaming video application, the streaming server can be
integrated in the renewability policy so as to force the client to download
a different decoder function after a specified number of video frames
have been sent. The application server can thereafter send differently
encrypted or encoded frames, which the old decoder function is not able
to decode. This option offers the vendor much more control over the
renewability policy. The price, however, is a sharp dent in the separation
of concerns, as the protection is now to a large degree hard-coded in the
application source code.

6.3.2 Renewability Communication Design

After a decision has been made by the renewability policy, it has to be
communicated to the protected application. We elaborate on two possi-
ble designs for this communication: an application-agnostic, decoupled
communication design, and a tightly-integrated, coupled communica-
tion design.

In the case of a decoupled communication design, we can build on
existing the ASPIRE components: The client-side Binder component
handles flushing commands received from the server, while the server-
side Renewability Manager sets up a bi-directional connection with the
application for future, server-initiated flush requests. Flushing consists
of the deallocation of individually specified—or even all—mobile blocks,
the resetting of addresses in the ... . . . . . . . . .GMRT, and informing the server of its
completion. In this manner, the server can be aware that flushing is not
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happening, and suspect the client is being tampered with. When the
client fails to confirm the flush request within a given time, an appropri-
ate reaction can be activated.

Conversely, in a coupled communication design, both the protected
application logic and server logic (including the existing protocols) are
augmented in order to support all communication logic that is required
for renewability (e.g., receiving new blocks, receiving and confirming
flush requests, etc.). The application server needs to communicate di-
rectly with the Renewability Service to obtain mobile blocks, and will
need to embed those blocks—together with descriptions of renewability
actions—in the packets sent to the client application. This is practical,
e.g., for streaming video applications, where mobile blocks can be sent
together with the video frame data. The client application is then also
adapted by adding the necessary functionality—in the client’s source
code—to handle the extra content of packets coming in from the ap-
plication server, and, if necessary, to respond by inserting responses in
outgoing packets.

6.4 Mobile Data Blocks

When code fragments are made mobile, it suffices to replace all call sites
with stubs, and use a simple indirection step to either download the code
fragment, or to execute it immediately. In contrast, data blocks can be
accessed from any location in the program that can dereference a pointer
to the block. Due to the problem of aliasing [35], precisely identifying all
those locations for all potentially useful mobile data blocks is impossible.
Even if it would be possible, adapting all code to ensure that a data block
is downloaded before it is accessed would introduce an unacceptably
high overhead.

The solution is not to adapt the program locations where pointers are
potentially consumed, but instead to adapt the locations where pointers
to the data blocks are produced.

To produce an address of a statically allocated data section during
the execution of a program, three options exist. First, the address of some
section can be available in the statically allocated data of the program, i.e.,
in another data section. Such cases are trivial to identify in object files,
as they are marked in the relocation information that linkers consume to
relocate such addresses. The second option is that the address of some
data or data section is computed in a code fragment of the same binary.
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Those cases can also be identified through the relocation information.
The third option is that the address of some section is produced or
statically stored in another binary (e.g., a library) that is loaded into the
same process. That case can only occur when at least one symbol in the
section at hand is exported from the binary containing the section. If no
such symbol is exported, it is impossible for the dynamic loader to let
another binary relocate a symbolic reference to the section.

In short, data sections linked into a binary become accessible if and
only if (i) a symbol residing in the section is exported from the linked
binary, or (ii) a relocatable address residing in the section is stored in
another section that is accessible, or (iii) a relocatable address residing
in the section is produced in code being executed.

These conditions for being accessible are already used by linkers.
The GNU linker option –gc-sections [52] lets it garbage collect all
inaccessible sections. Link-time program compaction techniques have
pushed this further by combining inaccessible section analysis with
whole-program unreachable code analysis [33]. Our support for data
mobility relies on the same principle: We limit mobility to data blocks
that (i) correspond to full data sections in the object files and that (ii)
become accessible only because their addresses are computed in code
that is marked to become mobile and possibly renewable. We exclude
data sections that become accessible because their addresses are stored
in other data sections or because they are exported.

The limitation to full data sections poses no problems for the forms
of renewability that will be discussed in Section 6.6. Most compilers
offer a compilation flag -fdata-sections to store statically allocated
variables in a separate data section each. So the granularity for making
data mobile is that of individual global variables. This suits our purpose.

The second limitation poses no problems for the forms of renewabil-
ity we currently support either, because we only make data mobile in
connection with mobile code. When a source code fragment is annotated
with code mobility pragmas, and the option of data mobility is enabled
in the pragma, the link-time rewriter automatically identifies all data
sections that become accessible only through addresses produced in that
code fragment. Those data sections are then made mobile together with
the code fragment. Our data mobility can hence be seen as code mobil-
ity where statically allocated data “owned” by a mobile code fragment
becomes part of its mobile block. In Figure 6.1, this is visualized with
arrows from mobile code blocks to mobile data blocks in the heap mem-
ory region of the client-side application. Remember, those arrows do not
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indicate that only the mobile code blocks can access the data. They only
indicate that the mobile code blocks contain the code fragments that
generate pointers to the mobile data blocks in the program state as the
mobile block is executed, thus making the mobile data blocks accessible
to other code fragments.

Because the Binder and the injected stubs ensure that each mobile
code fragment is downloaded before it is executed, and because they
download the mobile data together with the code that can produce the
data’s address, they also ensure that mobile data is downloaded before
any pointer to it is generated or used to access the data.

6.5 Tool Flow Support

Figure 6.2 depicts the tool flow that integrates the renewability frame-
work with protections. Full black arrows denote the compiler and pro-
tection tool flow of code and data that includes basic code mobility (as
discussed in Section 5.3) but without renewability. Dashed black arrows
denote the generation of renewable code generators. This code generator
generation process was added to the existing tool chain for supporting
renewability. Dashed red arrows visualize the flow of code and data
when renewedmobile blocks are generated, either a priori or on demand.

6.5.1 Existing Static Protections and Mobility Tool Flow

The existing tool flow supports the insertion of software protections in
three phases. First our tool chain contains a number of source-to-source
protection plug-ins. These take seeds, keys, and other configuration
parameters as input, together with the application source code to be
protected. In step a , the plug-ins produce transformed, (partially) pro-
tected application source code, as well as protection source code that
implements additional protection functionality to be injected into the
application. The operation of the plug-ins is based on source code anno-
tations such as pragmas and attributes. These annotations allow one to
mark the code fragments that need to be protected and to specify the pro-
tections to be deployed, their parameters and configuration. Figure 6.2
only depicts one source-to-source plug-in, but any number of them can
be chained in practice [5].

Both sets of source code produced by the source-level plug-ins chain
are then fed to a compiler to produce object files in step b . The compiler
can optionally inject additional protections. In our prototype, this is not
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the case, as we use a standard LLVM to compile Linux and Android
binaries.

From the source code files fed to the compiler, the remaining anno-
tations and their line numbers are extracted by an annotation extractor
in step c . After the object files have been linked, both the object files,
the linked binary a.out, and the extracted annotations are fed to a bi-
nary rewriter, together with additional seeds, keys, and configuration
info. The binary rewriter deploys binary-code-level protections, extracts
blocks to make themmobile, and applies further protections, both on the
extracted code and on the remaining, static code. In step d the rewriter
produces the fully protected application as well as an initial set of mobile
blocks as specified by the code mobility annotations extracted from the
source code. The binary rewriter maps source code annotations onto
binary code fragments by means of the extracted source line numbers
and the line number information present in the object files.

6.5.2 Renewable Code Generator Generation

The existing static tool flow is extended in several ways to enable renewa-
bility for both protection code and original application code. First, the
spec of the source code annotations is extended to support renewability.
The tool chain documentation provides a full spec of the annotations [5].

Secondly, source-to-source plug-ins are extended to produce not
only the initial code version, but also the necessary code and data for
generating additional code versions later on. See e in Figure 6.2. Three
components are made available per form of renewable protection. First, a
renewable protection code generator is needed, and its code and configuration
inputs need to be stored persistently. The generator is a version of the
plug-in that can be invoked separately, with new seeds, keys, and other
configuration parameters to generate different code versions. Its code
and configuration input contains a partial copy of the original source code
and annotation input of the plug-in. This generator can be application-
specific, in which case it is produced or at least customized on the fly by
the plug-in during the source-to-source protection, but it can also be a
pre-installed tool.

To inject the renewed source code generated by the generator and
compiled by the existing compiler into actual mobile blocks, a block
extractor is needed. This can also be application-specific or pre-installed.
It knows, for the form of protection supported by the plug-in, how to
extract binary code fragments and data sections from object files, which
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can trivially be donewith standard GNU binutils tools, and how to create
new mobile block versions out of them to be stored in the Diversified
Block database.

6.5.3 Renewable Code Generation

With the presented tool flow, renewed versions of code and data blocks
can be generated. For source-level protections, the generators are in-
voked on their input codes and configurations, albeit of course with
new, different seeds, keys, and parameters. The result of this step f
is renewed source code, either of the original application or of some
protection. This renewed source code is then compiled to produce re-
newed object files in step g , after which the block extractor extracts and
assembles renewed mobile blocks in step h .

For binary-level protections, our prototype of the renewal process
re-runs the binary rewriter on its inputs with new seeds, keys, and
configuration parameters. The binary rewriter then produces renewed
mobile blocks in step i . This is not very efficient, as each invocation of
the rewriter re-executes all the binary-level processing passes, includ-
ing passes on code fragments that do not become mobile. With some
engineering, this can definitely be made more efficient.

6.5.4 Discussion

Neither the framework architecture nor the tool flow are limited to ap-
plication executables. As is, they can also be deployed to protect dynam-
ically linked libraries. In Figure 6.2, both a.out and the protected app in
that flow can in fact be libraries such as libmylib.a.

In our proof-of-concept implementation resulting from the ASPIRE
project, all the necessary client-side components (Communication Logic,
Downloader, Binder, ...) are linked statically into either an executable
or into a dynamically linked library, and non-exported symbols are
stripped. This means that, e.g., the Binder cannot be identified by means
of symbol information, and also that its code is mingled and protected
with the original application or library code. This design choice does
imply that when multiple dynamically linked libraries protected with
renewable protections are loaded into the same application process, those
components will be loaded and executed multiple times, possibly even
in parallel. To avoid this overhead, one could opt to put the client-side
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components in a separate dynamically linked library, of which only one
copy then needs to be loaded into a process.

That would lower the level of protection, however, as all the interfaces
to those components are then exposed in the libraries’ exported and im-
ported symbols. Furthermore, in that case a ... . . . . . . . . . .MATE attacker would only
have to attack one version of those components to defeat all renewability
in the process. When there is one copy per library, all of which can be
protected with different, independent anti-tampering and anti-reverse-
engineering protections, such as different forms of obfuscations, remote
attestation, and renewability, an attacker will have to invest much more
work.

Secondly, putting the components in an external library would im-
ply that the single version of each component that is then loaded into
the running process has to perform the renewability bookkeeping of
multiple libraries that were possibly compiled and protected completely
independently from each other. This would make those components
muchmore complex, and it would significantly impact important aspects
of the software development life cycle. For example, it would imply that
only libraries protected with compatible forms of the renewability sup-
port can be loaded together into a process. This wouldmake it practically
infeasible to load protected libraries from independent vendors into the
same process, which would result in a DLL Hell as existed on Windows
in the past. In the current design, by contrast, every loaded library and
the renewability components in it are oblivious to the fact that other pro-
tected libraries with renewability components are running in the same
process. They can even connect to different servers. This is obviously
useful: It is not unimaginable that vendors of different libraries (e.g.,
libraries that implement vendor-specific DRM plug-ins for Android’s
media and DRM frameworks) only trust their own servers.

Also on the server, each of the running libraries are treated in isolation.
Even if multiple libraries running in some client process connect to the
same server, that server does not know that its incoming requests are
originating from the same running process. This greatly eases the design
and development of the server functionality.

Of course, this design choice limits the flexibility of the server deci-
sion processes. Currently, there is no global coordination between the
renewability services serving the multiple libraries that may be running
in the same process, and that hence may be undergoing the same attack.
As future work, we plan to investigate whether such coordination can be
supported effectively and efficiently.



128 CHAPTER 6. NATIVE CODE RENEWABILITY

6.6 Mitigations Against Concrete Attacks

The renewability framework supports a range of renewable software
protections that mitigate ... . . . . . . . . .MATE attack steps.

6.6.1 Syntactically Diversified Mobile Code

Dynamic analysis can be donemanually, e.g., with a single-step debugger,
or it can be automated, e.g., by collecting trace information with an
emulator. It can also be semi-automated, e.g., by writing small debugger
scripts that steer the program execution up to the specific point of interest
by means of breakpoints and watches, at which point manual single
stepping can start to collect additional information. Such scripts are
often developed iteratively: Each time more information is obtained, the
scripts are adapted to zoom in on the next piece of useful information on
the attackers’ path. All of these approaches commonly involve multiple
runs of the same program. This also happens in, e.g., delta-debugging-
like attacks, in which the difference in program execution behavior on
different inputs is analyzed [3], and it obviously also happens in fuzzing
attacks [100]. Such attacks require repeatability, and become harder if
the code fragments that are revisited differ from one run to the other.

This can be achieved by syntactically diversifying the code in re-
newedmobile blocks. Rather than creating one version of a mobile block,
multiple semantically equivalent but syntactically different versions can
be created and delivered.

Our prototype tool flow creates versions by stochastically applying
obfuscations (opaque predicates, branch functions, and control flow
flattening) and code layout randomization on the extracted code frag-
ments. By initializing a pseudo-random number generator with varying
seeds, versions can be generated that feature varying ... . . . . . . . .CFGs and code
layouts [29]. This makes it significantly harder, e.g., for attackers to au-
tomate the setting of breakpoints in their scripts. It also makes it harder
to compare multiple traces in collusion attacks.

The applied obfuscations have previously demonstrated their ef-
fectiveness in the context of collusion attacks that rely on program diff-
ing [29], where they prevent diffing tools to automate the identification of
the corresponding code fragments in two syntactically different versions
of the same software. We therefore conjecture that it will be non-trivial
for an attacker to automatically overcome the protection provided by
syntactically diversified mobile code.
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6.6.2 Semantically Diversified Mobile Code

Syntactical diversification does not hamper all attack tools. For example,
pointer chaining tools (e.g., Cheat Engine - https://www.cheatengine.
org/) can still find relevant data in randomized memory layouts during
repeated executions. In a first run of a program, the attacker then identi-
fies the relevant data in the process memory space manually. The tool
then collects the pointer chains to the identified data. These chains are
lists of offsets. For example, the transparency value of a wall in a shooter
game might be located at the end of the chain *(*(*(frame_pointer_-
main+24)+4)+8), which does not depend on the code syntax or layout,
or on the data layout as affected by address space layout randomization.
Cheaters might want to make the walls transparent to see their adver-
saries through them. For such chains to become invalid for repeated
executions, the order of fields in C/C++ structs and classes needs to be
diversified, the location where data is stored in stack frames needs to be
diversified, the order in which parameters are passed to functions needs
to be diversified, etc.

We hence need diversification that also changes the semantics of
individual fragments, i.e., the relation between the process state before
and after their execution. For example, when the fields in a C struct are
reordered, fragments writing to the fields will write to different offsets
in allocated memory blocks, thus implementing different semantics.

Deploying such diversifications is more difficult, however, because
they have a more global impact on the generated code. If the order of
fields in a struct is altered, all code in the binary that accesses the struct
will change aswell, in a consistentmanner: The same change in offsetwill
occur all over the program. Likewise, if the signature of a procedure is
altered, e.g., by reordering its parameters, the procedure’s code bodywill
change, but so will the code of all its callers. When aggressive compiler
optimizations are used, those initial changes can result in ripple effects
throughout the binary code of all directly or indirectly affected functions.
In general, almost all data and data flow obfuscations or diversification
techniques [88] have more global effects on the generated code. To
support such forms of diversification, a client that is served multiple
diversified code fragments by a renewability server can only execute
correctly if all of the fragments served during a single run implement
and assume consistent semantics.

Our approach supports this, because the server can partition the
diversified mobile blocks into consistent groups: The Renewability Man-

https://www.cheatengine.org/
https://www.cheatengine.org/
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ager can be informedwhich versions of the mobile blocks in the database
feature consistent semantics, which do not, and which ones are indepen-
dent. Simple server-side bookkeeping can then ensure that whenever
some block is requested, it only delivers blocks that are independent of
or consistent with previously delivered blocks.

Of course, the use of this form of semantic fragment-level diversity
restricts the freedom of the renewability policies to replace fragments
within a single execution of a program: Once data values or the layout
of data in the client program’s address space have been produced by a
certain first code version, all code executed later during that execution
has to be consistent with that first code version.

Still, the use of attack tools and reuse of attack scripts over multiple
runs of an application can be significantly hampered by this form of
protection. In particular, it will decrease the effectiveness of pointer
chaining tools.

To support semantic renewability, we extended the basic tool flow
of Figure 6.2 somewhat. For a prototype implementation that changes
the layout and order of fields in structs and the parameter order of
functions, we rely on a source-to-source protection plug-in to generate
the diversified code. To enable the identification of all binary code
fragments that undergo relevant changes as a direct result of the source-
level diversification or as a result of ripple effects through compiler
optimizations, multiple approaches can be envisioned.

In our approach, we do not want to restrict or alter the used compiler.
Instead, in line with common industrial software development life cycle
requirements, we want to keep treating the used compiler as a black
box. Then two options remain. The first, more conservative option, is
to track references to diversified function signatures and structs in the
rewritten source code, to mark any function that directly or indirectly
touches (directly or indirectly) upon such references as dependent on
the deployed diversification, and to enforce separate compilation of each
function in the compiler such that compiler optimization ripple effects
are bound to individual functions. This strategy will conservatively
overapproximate all functions or code regions that might be affected by
the deployed diversification, which allows us to make all of those mobile
and renewable.

A more accurate identification of the altered binary code fragments,
i.e., the ones that need to be made mobile and renewable as a result of
source-level diversification and potential ripple effects, can be achieved
through binary diffing. To enable this diffing in our tool flow, we generate
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all diversified versions upfront. We also compile all of them upfront.
We then run a binary differ that compares the compiled binaries, and
identifies the precise differences between the compiled versions. The
binary code regions embodying those differences are then marked to
be made mobile and renewable in the binary rewriter. Only after all
versions are compared and all necessary regions are identified do we
run the binary rewriter to extract the necessary blocks from all program
versions. The remaining rewritten binary in which these blocks are
removed, is then identical across all versions, as it consists of the binary
code fragments that did not differ at all across the different versions,
whereas the mobile blocks contain all the differing code.

This black-box approach offers the advantage of not needing any
change to the used third-party compiler and linker, or to the internal
operation of the binary rewriter. The developer of the source-to-source
protection plug-in that implements this semantic diversity hence does not
need to invest any effort in learning all the ripple effects that those three
complex tools might induce as a consequence of his source code trans-
formations. The diffing tool automatically exposes all code impacted
by the ripple effects. We implemented our own Clang-based source-
to-source rewriter, but our approach easily allows for other (already
existing) source-to-source rewriters.

It is important to note that the semantic diversification does not
need to be limited to individual code fragments. If appropriate, it can
easily be extended to externally visible changes to the semantics of the
whole program as well. For example, in some cases it might be useful
to renew the semantics of code fragments that prepare a payload to be
sent to the original application server (see Figure 6.1) or that consume a
payload received from the application server. Formally, this changes the
semantics of the whole client program, but if this is coordinated with the
semantics implemented on the application server, this can be perfectly
fine, and happen transparently to the end user of the software.
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6.6.3 Diversified Static-To-Procedural Conversion

Static data such as strings can serve as hooks in many attacks. To protect
these against static inspection, static-to-procedural conversion [88] re-
places the static data by invocations to injected procedures that compute
the data on the fly. If dynamic attacks are then also made harder, e.g.,
by combining this protection with anti-debugging (discussed in Chap-
ter 4), strong protection can be obtained. With renewability, the level
of protection can be increased even further: If the code that computes
the data changes between every run of a program, the attacker will have
to adapt and re-execute his attack script to extract the data he is after
whenever a new version is downloaded.

This form of renewability is readily supported: It suffices to let the
source-to-source protector generate randomized procedures to replace
static data, and to annotate these to have them extracted by the binary
rewriter.

6.6.4 Dynamic and Time-Limited ... . . . . . . .WBC

WBC (White-Box Cryptography) is a technique for protecting the con-
fidentiality of cryptographic keys in software [20, 113]. The literature
mostly focuses on fixed-key implementations, where the key is hard-
coded in the software. Rather than including a key as a constant input
to a standard implementation of a cryptographic primitive, which is
trivial to attack in a ... . . . . . . . . .MATE scenario, a custom version of the primitive
is included in the software, which hard-codes the key in a way that it
cannot be extracted (easily), e.g., by encoding it in large randomized
tables or code structures.

Fixed-key implementations are acceptable for some use cases such
as hard-coding global bootstrap keys. However, for many industrial use
cases keys need to be updatable. For example, for personalizing software
with application-unique keys or for installing service-dependent keys,
cryptographic implementations can ideally be instantiated with keys
at run time [114]. While there is almost no literature on this, several
companies are selling such dynamic-key white-box implementations; there
is no publicly available information on they are built. One possible ap-
proach would be to build special-purpose white-box implementations
which receive a protected version of the key as input. The protection
of the keys then needs to be integrated in the application design, and
additional routines such as preprocessing the protected key and key
schedule algorithms need to be integrated: This introduces a lot of addi-
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tional complexity and can have a considerable impact on performance
and code size. Another approach is to update existing fixed-key imple-
mentations at run time. In the most commonwhite-box implementations
such as that of Chow et al. [20], key material is embedded in look-up
tables. It suffices to update these tables in order to change the key, so
the technique of mobile data blocks can be applied to achieve dynamic
white-box implementations. Other white-box techniques do not solely
depend on look-up tables [8, 11], but also encode the key in complex
code structures. Updating the key then implies updating the code. This
is also supported out-of-the-box with our renewability framework. In
summary, our framework offers all that is required to evolve from static
key ... . . . . . . .WBC to dynamic key ... . . . . . .WBC.

Still, designing secure ... . . . . . . .WBC implementations, whether static or dy-
namic, remains a challenge. All currently proposed designs have been
broken, and recent proposals that are submitted to the ECRYPT White-
Box Cryptography Competition (the WhibOx Contest) [37] are chal-
lenged in a matter of hours or days. Therefore, rather than focusing
on designing implementations that give long-term security guarantees
(and will probably be very slow and large) an alternative approach is
to focus on more efficient but less secure implementations that are re-
newed at high frequencies. We denote these as time-limited white-box
implementations. Such ... . . . . . . .WBC implementations can protect short-lived
session keys or temporary access tokens with acceptable performance.
With those implementations, it are then not the keys that need to be
rotated frequently, but the ... . . . . . . .WBC implementations that embed the keys.
This rotation is readily supported by our renewability framework.

Combining this form of renewability with the already discussed
forms of diversification can then help to achieve longer-term protection
as well, namely by ensuring that the rotated implementations differ in
more respects than simply embedding different keys, thus hampering
attackers in reusing simple attack scripts.

6.6.5 Diversified Instruction Set Randomization

A popular form of obfuscation is to translate an application or part
thereof is to some virtual, randomized bytecode ... . . .ISA. At run time,
the bytecode is emulated. Popular tools that implement this form of
emulation-based obfuscation are CodeVirtualizer [91], EXECryptor [99],
Themida [90], and VMProtect [106]. Unlike native code formats—which
are well-documented by processor manufacturers—the randomized ... . . . .ISA
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is not documented. It is also diversified for each protected program to
reduce the learnability for attackers.

Custombytecode can bemademobilewhen it is read-only datawhere
the set of code locations that refer to it is clear and limited. In the ASPIRE
tool chain, security-sensitive chunks of native code are translated into
bytecode chunks [14, 116]. The original chunks are replaced by stubs
that invoke the emulator, passing it a pointer to the data representing
the bytecode. This scheme fits our mobile data block support perfectly:
The stub becomes mobile code, and the bytecode—to which only the
stub produces a pointer—becomes a mobile data block attached to that
mobile code.

Bytecode renewability can then be achieved by combining diversified
mobile bytecode with semantic diversification of the emulator. Both the
semantics and the syntax of the bytecode can then vary over time; for
each execution a corresponding interpreter and bytecodes are delivered.

6.6.6 Evolving Protections

The proposed tool flow and architecture pose no limits on the sizes of
the mobile blocks. In particular, renewed blocks don’t need to have the
same sizes. This helps in supporting gradually evolving renewability,
e.g., where over time more complex forms of protections are delivered
to client applications as those protections become available in response
to detected attacks. For example, when more advanced attacks on ... . . . . . . .WBC
crypto schemes become available over time that reduce the search space
for brute-force attacks, or when faster brute-force methods become avail-
able, more complex versions of thewhite-box algorithms can be delivered
to the client applications to catch up with the attacker’s capabilities. In
many ... . . . . . . .WBC schemes, this can be achieved with bigger tables that embed
the secret keys.

To support such evolving protections with our framework, the only
aspect that needs to remain constant from one mobile block to another is
the binary-level interface of each renewed code block, i.e., the way data
is passed to and from the mobile blocks to static code, and in between
mobile blocks: the registers used, the stack frame layout, ...

For source-level forms of diversification and renewability, this re-
quirement of constant binary-level interfaces can in practice only be
achieved when the mobile code blocks correspond to units of which
the compiler cannot alter the binary-level interface at will. This is the
case for functions or methods, because compilers are bound to calling
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conventions. Functions and methods are often also the “units” in which
developers implement functionality, be it protection, library, or appli-
cation functionality. So in practice, the limitation to renew only whole
functions does not impose overly strict restrictions on the ability to let
the deployed protection components vary over time.

Besides the potential to respond to advances in the attacker’s tool-
box, this ability to vary the deployed protection offers two major ad-
vantages. First, it can help in reducing the time to market. Selecting
the optimal combination of software protections is a cumbersome, diffi-
cult, time-consuming task. The proposed renewability framework—and
the capability to vary protections over time—allows vendors to release
weaker protected versions early, and to upgrade the protection seam-
lessly (without the user being disturbed) after the initial release. Second,
the ability to vary the deployed protections over time can be used to find
a better balance between their strength and overhead. A good example
is code integrity verification by means of remote attestation based on
code guards. Code guards are basically hashing functions that compute
hashes over the code being executed. With remote attestation, a server
requests such a code guard to be executed on some code region, and
checks whether the received hash value is the expected one. If not, this
is a signal that the code has been tampered with. Different remote attes-
tation and code guard designs come with different degrees of overhead.
To keep the overhead acceptable, all schemes leave some freedom to the
attacker to tamper and remain undetected. When the deployed scheme
varies over time, however, as supported by our approach, the attacker
has to take into account all possible schemes to remain undetected for a
longer period of time. As already discussed before, attacks often involve
multiple executions of a program, so this period typically spans multiple
executions. During any (tampered) run then, the attacker has to be
cautious and assume no freedom, as if all anti-tampering schemes were
being deployed together. At any point in time, however, only one or
a couple of schemes are actually deployed. A regular user thus only
experiences the overhead of a limited number of them. In the ASPIRE
project, we experimented with renewing code guard implementations
that, e.g., vary the pseudo-random walk over the code fragments they
hash. By making it unpredictable for an attacker which instructions will
be visited, it suffices to hash only a limited number of instructions during
any invocation of a guard.
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6.7 Experimental Evaluation

6.7.1 Target Platform of Prototype Implementation

Our prototype targets ARMv7 client platforms. Our client hardware
consists of several developer boards, on which we ran Linux 3.15 and
Android 4.3+4.4. For Linux, we used a Panda Board featuring a single-
core Texas Instruments OMAP4 processor, an Arndale Board featuring a
double-core Samsung Exynos processor, and a Boundary Devices Nitro-
gen6X/SABRE Lite Board featuring a 1GHz quad-core ARM Cortex A9
with 1 GByte of DRAM. The latter was also used for running all Android
benchmark versions, and for running the measurement experiments
reported below. On the server side we set up a VirtualBox VM (Virtual
Machine) running a 64-bit Debian Linux, 2 GBytes of RAM and a Gbit
NIC adapter. This ... . . . .VM ran on an Intel Xeon E3-1270 CPU 3.50GHz with
16 GBytes of RAM. We used GCC 4.8.1, LLVM 3.4, and GNU binutils
2.23 for the client, for which we compiled code with -Os -march=armv7-a
-marm -mfloat-abi=softfp -mfpu=neon -msoft-float. On the server we
used GCC 4.8.1 and binutils 2.23 to build our components. The Mobil-
ity Server and Renewability Manager were compiled with -O3 and -Os
-fpic respectively.

6.7.2 Validation on Use Cases

The robustness and applicability of our framework were tested by de-
ploying various forms of renewability on two industrial use cases that
were developed independently by two market leader companies using
different development approaches, software architectures, and build sys-
tems. Each use case consists of a shared library of sufficient complexity to
represent real software products and with embedded, security-sensitive
assets representative of the assets in the companies’ real products. We
chose the code and data fragments to make mobile and renewable to-
gether with the application architects and developers, and with security
architects from the companies.

The first use case consists of two plug-ins, written in C andC++atNa-
gravision S.A., for the Android media framework and the Android DRM
framework. These plug-ins, in the form of dynamically linked libraries,
are necessary to access encrypted movies. A video app programmed
in Java is used as a GUI to watch the videos. This app communicates
with the mediaserver and DRM frameworks of Android, informing the
frameworks which vendor’s plug-ins they require. On demand, these
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frameworks then load the library plug-ins. In our research, we observed
several features that make this use case a perfect stress test. The multi-
threadedmediaserver launches and kills threads all the time. The plug-in
libraries are loaded and unloaded frequently, sometimes the unloading
being initiated even before the initialization of the library is finished.
As soon as the process crashes, a new instance is launched. Sometimes
this allows the Java video player to continue functioning undisrupted,
sometimes it does not. These forms of behavior stress all client and server
components.

The second use case is a software license manager that stores cre-
dentials, and controls access to licensed content and functionality, e.g.,
through time-limited and key-enabled licenses. This manager is pro-
grammed in C at SafeNet Germany GmbH. It is a dynamically linked
library that includes the JNI interface, and is embedded in an Android
app. This native library thus functions as a license manager for a Java
application. In this case, the Java application is relatively simple: It is a
riddle game of which the solutions are protected by the license manager.
To test our renewability support, this use case is also interesting. In
particular, the library is loaded into Android’s Dalvik execution envi-
ronment, which features multiple threads (such as for the JIT compiler,
garbage collector, ...), and over which we have absolutely no control [9].
A command-line version of the riddle game, programmed in C, is also
available. It uses the same library (except the JNI wrapper). On top of
providing an easier target to debug on our Android developer boards,
this command-line version can also be compiled for Linux. This way, we
could also test our implementation on Linux.

Table 6.1 lists a number of features of the two use cases as an indica-
tion of their representativeness of real-world software. The number of
source code lines includes all the mentioned third-party libraries that are
compiled and statically linked into the shared libraries to be protected.
Whereas the linked-in libraries do not contain any assets, they operate on
assets such as keys, and their control flow needs to be protected against
reverse engineering as well.

Even though no additional protections are listed in the table, we did
actually combine many additional non-renewed protections with the
listed forms of renewability on the industrial use cases. This includes
anti-debugging (discussed in Chapter 4), remote attestation [105], and
code and data obfuscation techniques [88].

The third row of Table 6.1 lists bzip2, the popular compression tool.
While this open source program does not contain any security-sensitive
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assets, we did deploy it to evaluate the correctness of our tool support
for both syntactically and semantically diversified mobile code on a real
program. We evaluated two semantic source-to-source diversifications:
struct field reordering and function parameter reordering. The correct-
ness of the semantic code diversification transformations was evaluated
by compiling and testing the diversified code as it was diversified with
the source-to-source plug-in. The correctness of the whole semantic
code diversification setup was evaluated by using the deploying the
full extended tool flow, including the binary diffing and mobile block
extraction during binary rewriting, on multiple diversified versions. For
all of them, the exact same static binary with mobile blocks extracted
was obtained, and that binary was tested to execute correctly with any
compatible version of renewable blocks delivered to it.

Next, we investigated how the degree of semantic diversification (of
Section 6.6.2) influences the generated binaries andmobile blocks. In our
flow, a set of blocks that is mutually compatible originates from the same
diversified instance of the program. Any function that is diversified in
any specific instance needs to be made mobile in all instances in order
for them to be compatible with the same binary. Thus, increasing the
number of diversified program instances—from which the renewable
sets of blocks originate—will have an effect on the number of blocks that
need to be made mobile, and on the size of the remaining static binary.
To gain some insights into these effects, we experimented with bzip2
and function parameter reordering. Our tool flow has a configuration
parameter to specify the number of different versions that need to be
generated by diversifying the code of selected software components. We
varied this parameter value from 2 to 100. For each evaluated value,
we did not select any specific subset of functions for diversification, but
instead allowed the tools to randomly select any subset of functions in
the whole program to reorder their parameters. For each of the selected
parameter values, we ran a total of 20 differently random-seeded runs
of our framework, and averaged the measurements. We also measured
the size of the .text section of the undiversified bzip2 binary both with
and without the extra support code that is linked into the binary to
support the code mobility functionality. This ‘base’ .text section consists
of 94.9KB without support code, and 1116.6KB with; it is thus clear that
for this specific use case the mobility support code exceeds the original
application code by an order of magnitude.

Table 6.2 shows some results. For every number of compatible pro-
grams, we measured the averages of: the number of functions found to
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versions mobile functions mobile to base
.text

base .text
remaining

2 3 8.0% 93.6%
5 8 24.4% 79.8%
10 15 37.5% 68.8%
20 22 53.9% 54.7%
50 31 77.7% 33.1%
100 32 79.5% 31.4%

Table 6.2: Effects of increasing the number of diversified versions for function
parameter reordering

differ and thus made mobile, the total size of mobile blocks proportion-
ate to the base .text section, and the percentage of base .text still present
in the binary. It can be seen that the portion of the binary being made
mobile increases with the requested number of diversified versions, but
that there is a limit to this increase. There might be code that will never
be impacted by the specific diversifications used, and thus need never be
made mobile (as a simple example, leaf functions without parameters
can never need to be made mobile with this specific diversification trans-
formation). Next to that, the transformations used for code mobility
both increase the size of the mobile code, and the size of any code still
left in the binary invoking the mobile code. Note that the two fractions
add up to more than 100% because making fragments mobile involves
the injection of stubs and other small code snippets in the static binary,
and because the code in mobile blocks is enlarged as it is transformed to
make it offset-independent as discussed in Section 6.2.

Finally, we tested diversified ... . . . . . . .WBC on a small stand-alone ... . . . . . . .WBC
crypto app. Whilewedid somainly to performoverheadmeasurements—
on which we report later—they also contribute to the validation of the
prototype implementation and hence the practicality of the proposed
approach.

In summary, the forms of renewability listed in Table 6.1 have been
validated on four use cases. Combined, our evaluation hence successfully
covers four applications from Section 6.6. Most importantly, it covers
both mobile and renewed code, and mobile and renewed data—thus
covering all client functionality—as well as most (and definitely all core)
server functionality. Finally, the evaluation successfully covers Android
and Linux platforms, and application executables as well as dynamically
linked libraries.



6.7. EXPERIMENTAL EVALUATION 141

Almost all prototypes of framework components we discussed and
evaluated are available on-line in the ASPIRE project code repository
at https://github.com/aspire-fp7; the only exception are the propri-
etary generators of white-box cryptographic primitives.

6.7.3 Performance Overhead

In our previous work, we already analyzed the overhead of basic code
mobility when it is deployed over various wired and wireless networks
with different throughputs and latencies (as discussed in Section 5.4).
The difference between basic code mobility and renewability is the flush-
ing and re-downloading of code after the initial download. The impact
thereof on performance obviously depends on the frequency with which
code needs to be flushed, as well as on the frequency with which it
needs to be downloaded. The flushing frequency is determined by the
enforced renewability policy. This hence varies from one usage scenario
to another, and even from one asset to another. The re-download fre-
quency depends on the flushing frequency, but also on the frequency
with which the mobile code and data is executed and accessed. As an
extreme example, a code fragment that is only executed when a new
movie is launched in a media player, will need to be downloaded at
most once per movie, however fast it is flushed after that execution. By
contrast, a code fragment that is executed once or more per frame in the
movie will need to be reloaded at essentially the flushing frequency.

The performance overhead of the proposed renewability protection
will hence vary wildly from one scenario to another. We therefore aim
for providing the reader a feeling for the range of overhead to expect,
rather than for trying to argue that the overhead is low enough. What is
acceptable and what is not, depends on the usage scenario at hand.

We did not measure the timing of the interactive industrial use cases.
We can confirm, however, that the overhead of the renewability did not
significantly impact the overall user experience of those apps. In the
case of the DRM library, downloading mobile code produces a slight
additional delay when a movie is started, but this delay is negligible
compared to the delay caused by having to download enough frames to
fill the video buffer. The video playback frame rate was not impacted
by the renewable protections. The renewable functionality of the license
manager is downloaded when the software is launched, and whenever
functionality with custom licenses is accessed for the first time. On those

https://github.com/aspire-fp7
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occasions, the downloading of code introduces a (barely noticeable)
delay that is deemed acceptable.

Our first quantitative performance analysis was carried out on the
CPU-intensive bzip2 program (www.bzip2.org). The experiment con-
sisted of measuring different properties of multiple runs of bzip2 over
the controlled, standard input consisting of the SPEC2006 training data
(www.spec.org). Experiments were carried out on three program ver-
sions, in which different sets of functions were made renewable. For
the first two versions, we collected profile information with the GNU
gprof tool [53], and selected hot functions of which the total execution
time approximated respectively 20% and 50% of the total execution time
of the program. The second set is not a superset of the first one, but
there is some partial overlap. In the third version, all functions in the
bzip2 program are made renewable. This corresponds to 100% of the
total program execution time. It is hence clear that this experiment is not
meant to measure realistic overheads. Instead, the experiment serves the
purpose of a sensitivity analysis, demonstrating that the performance
overhead can be impacted by tuning the protection deployment, and
that there is a need to do so, because not doing so will often result in
unacceptable amounts of overhead.

With each version, we first set up a baseline by collecting the ex-
ecution time of a non-protected, vanilla application. For each of the
three renewability percentages, we then ran the program for different
renewability flushing time-outs of 1000, 2000, 3000, and 5000ms. For
each mobile block, 600 different versions were generated a priori, us-
ing syntactic code diversification techniques [29]. On each download
request, the Renewability Server picks one of them randomly.

For each runwe sampled thewall-clock execution time, the number of
transferred blocks, their total size in bytes, and the CPU time consumed
by the Renewability Manager on the server side. Each experiment was
repeated 20 times to collect data, in the remainder of this section, we
discuss and present averages over those 20 runs.

Table 6.3 reports the average wall-clock times and the overhead in
that regard, as well as the network overhead in terms of numbers of
downloaded blocks and the network throughput. Table 6.4 reports the
CPU time consumption on the server. For reference and comparison,
Table 6.5 presents the overhead when the different amounts of code
in bzip2 are made mobile, but never flushed and renewed, i.e., when
they are downloaded only once. The tables confirm that the overhead is

www.bzip2.org
www.spec.org
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mobility refresh time (s) execution time (s) transferred blocks
Mean StDev overhead Mean per sec. kb/s

0% - 279 0.3 - - - -

20%

1 324 1.6 16% 753 2.32 18.38
2 321 1.9 15% 401 1.25 9.94
3 319 1.0 14% 276 0.86 6.93
5 317 1.0 14% 171 0.54 4.34

50%

1 487 1.9 74% 3,885 7.97 12.77
2 475 3.7 70% 1,953 4.11 6.83
3 459 1.1 64% 1,267 2.76 4.63
5 456 2.9 63% 793 1.74 2.90

100%

1 647 4.9 132% 9,818 15.17 30.47
2 591 10.4 112% 5,236 8.86 18.99
3 565 3.3 102% 3,498 6.19 13.29
5 552 4.1 98% 2,127 3.85 8.23

Table 6.3: Client wall-clock execution times and network throughput of re-
newability on bzip2

mobility renewability refresh time (s)

1 2 3 5
20% 405 363 334 300
50% 923 621 544 439
100% 1,006 860 669 565

Table 6.4: Server CPU consumption for bzip2

mobility

20% 50% 100%

Client exec time (s)
Mean 282 299 313
StDev 211 135 136

overhead 1.1% 7.1% 12.0%
transferred blocks 4 22 55
blocks/s 0.01 0.07 0.18
network throughput (kb/s) 0.08 0.06 0.18

Table 6.5: Baseline overhead of code mobility on bzip2

directly related to both the renewal refresh rate and the hotness of the
code fragments being renewed.

Comparing the server overhead to the client execution times, we
observe that for this program and hardware, the server CPU load varies
between 0.1% and 0.2% of the client load. Scalability on the server
is hence another factor to be considered when deciding on the use of
renewability, on the fragments to bemade renewable, and on the renewal



144 CHAPTER 6. NATIVE CODE RENEWABILITY

refresh time (s) user-space CPU time (s) wall-clock exec. time (s)
Mean StDev overhead Mean StDev overhead

baseline 156.1 0.4 - 156.7 0.4 -
1 161.0 0.5 3.1% 179.0 0.6 14.2%
2 158.8 0.4 1.7% 165.6 0.4 5.6%
3 157.4 0.6 0.8% 162.5 0.6 3.7%
4 156.9 0.5 0.5% 160.6 0.5 2.5%
5 156.3 0.6 0.1% 159.8 0.5 2.0%

Table 6.6: Client CPU consumption andwall-clock execution times of renewable
... . . . . . . .WBC

refresh time (s) transferred blocks transferred MBs
Mean StDev Mean StDev

1 179.8 0.7 205.1 0.8
2 83.4 0.5 95.1 0.8
3 54.9 0.4 62.6 0.4
4 40.9 0.3 46.7 0.4
5 32.5 0.5 37.0 0.6

Table 6.7: Network throughput of renewable ... . . . . . .WBC

policy enforced by the server. The same obviously holds for scalability
of the network capacity.

A similar experiment with a C++ .... . . . . . .WBC crypto application was based
on Dušan Klinec’s implementation of the Chow .... . . . . . .WBC scheme with-
out external encodings [20], available at https://github.com/ph4r05/
Whitebox-crypto-AES. The decryption primitive and its embedded key
are implemented by means of large tables that total 1.14MB. Renewing
this routine and its tables to renew the decryption key hence involves
the downloading of a mobile block of about 1.14MB. This is significantly
larger than the code blocks that were downloaded in the bzip2 experi-
ments.

Table 6.6 reports client user-land CPU consumption times and client
wall-clock execution times of the baseline version without renewability,
and of the renewable version at different refresh rates. The differences
between the overheads in both measurements is significant. This is of
course due to the fact that the client side spends a significant amount
of time waiting for the large mobile blocks to arrive. However, during
that wait, no CPU resources are consumed. Still, even for the version
that only refreshes the routine and its embedded key every 5 seconds,
the user-land CPU time increases significantly. The reason is that the
Downloader and Binder components take up some computation time,

https://github.com/ph4r05/Whitebox-crypto-AES
https://github.com/ph4r05/Whitebox-crypto-AES
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and that the code transformations that are necessary to implement code
mobility and renewability also have a small, but significant effect on
performance.

Table 6.7 shows how the network throughput scales with the refresh
rates. The number of transferred blocks, which equals the number of
refreshes (plus 1) scales superlinearly with the refresh frequency be-
cause the execution time of the benchmark increases with higher refresh
frequencies. For this form of renewability, which inherently involves
large mobile blocks, the measurements confirm that network scalability
is an important issue to consider.

6.8 Related Work

Our framework combines and extends concepts from network-based
protections, and software diversity. Network-based software protection
techniques leverage software updates and trusted network services. The
updates may be implemented for the functional part of the program, and
for the protection techniques used to protect it [29]. Both Collberg et
al. [27] and Falcarin et al. [40] proposed the continuous replacement of
binary code, with the former making use of CIL (Common Intermediate
Language) to generate the diversified code. Collberg et al. supports
both syntactic and semantic diversity, using what they call Protocol-
Preserving and Non-Protocol-Preserving Transformation Primitives, re-
spectively. Contrary to the work of Collberg et al. [27], our framework
works by directly replacing binary code, giving it more freedom in terms
of granularity and composability with other techniques. Contrary to
both, our framework not onlymakes it possible to renew application code.
It can renew entire protection techniques, in an automated, specialized,
manner.

Previous Java work implemented dynamic replacement of remote
attestation protection code downloaded by a trusted server, using ex-
tended Java Virtual Machines [96]. Other techniques such as remote
attestation extend code guards with a network server. The Pioneer [70]
system relied on a verification function running on the client as an ... . . .OS
primitive, and an attestation server. Garay et al. [48] presented an ap-
proach where a trusted challenger sends a challenge to the potentially
corrupted responder. The challenge is an executable program that can ex-
ecute any function on the responder, which must compute the challenge
fast enough to prove its integrity.
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In literature [32, 46, 108], software diversity relied on random gener-
ation of diversified copies, starting from the same source code, extending
the idea of compiler-guided code variance [45]. A survey [72] compares
the different approaches for software diversity in terms of performance
and security, and recently software diversity has become practical due to
cloud computing enabling the computational power to perform massive
diversification [72]. Past software diversity approaches have been based
on some form of obfuscation [22], load-time binary transformation [68],
virtualization obfuscation based on customized virtual machines [58], or
... . . .OS randomization [117]. Other approaches rely on binary transforma-
tion based on a random seed [104], ormulti-compilers and cloud comput-
ing [46] to create a unique diverse binary version of every program, and
they apply such diversification for mobile apps [108]. The XIFER frame-
work [32] randomly diversifies Android apps at load time by means of
a binary rewriter. Both spatial and temporal software diversity has been
proposed as a solution to a wide range of problems: code randomization
has been used to defend against code-reuse attacks [98], return-oriented
programming attacks [57], and code injection attacks [112]. More fine-
grained forms of diversification have been proposed to raise the bar
even further [19, 51], including for code dynamically generated with
JIT compilers [59]. Dynamic temporal diversity has been proposed to
mitigate timing side channel attacks [47]. Diversification can prevent
collusion attacks to identify vulnerabilities [29].

Compared to the discussed work, our renewability framework pro-
vides a foundation to combine, compose, extend, and hence fortify sev-
eral existing defenses. The tool flow supports combinations and compo-
sitions, meaning that multiple protections can be deployed together on
the same program or even on the same code fragment. This follows in
part from its conception as part of the ASPIRE Compiler Tool Chain, the
software protection tool chain developed in the ASPIRE project as auto-
mated support for a wide range of software protections. Our framework
is fully compliant with the ASPIRE software protection reference archi-
tecture [14, 116]. The whole ASPIRE Compiler Tool Chain is available at
https://github.com/aspire-fp7/framework. As demonstrated, it is
applicable to native code, and is hence not limited to code distributed in
higher-level, more symbolic (and hence easier to attack) formats such as
Java bytecode or CIL. The granularity of the renewability is furthermore
not limited to coarse code fragments such as whole functions. Much
smaller (security-sensitive) code regions can instead be made renewable.

https://github.com/aspire-fp7/framework
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As already discussed in Sections 6.1 and 6.6, the framework and
concrete instantiations of its capabilities can mitigate concrete attack
paths. Recently, Ceccato et al. reported results of a qualitative analysis of
how professional hackers as well as amateurs understand protected code
while performing attack steps [16]. The resulting taxonomy of concepts
used by the hackers to describe their attacks towards code understanding,
and the inferred models of their activities and their reasoning, provide
further insights into how the proposed renewability framework can im-
pede certain attack paths and attack strategies. Several activities are
impacted by renewability as supported by our architecture and tool flow,
including but not limited to: static analysis, tracing, debugging, statis-
tical analysis, assessing the effort, building of workarounds, undoing
of protections, overcoming of protections, formulating hypotheses, and
confirmation of hypotheses. The latter two play an important role in
real-world attacks. They depend to a large degree on repeatability of
attack activities, which is directly addresses by the forms of renewability
our framework supports,

6.9 Conclusions and Future Work

We presented the ASPIRE framework, architecture and tool flow support
for native code renewability. This framework supports several forms of
renewability, in which renewed and diversified code and data, belonging
to either the original application or to linked-in protection components,
is delivered from a secure server to a client application on demand. This
results in frequent changes to the software components when they are
under attack, thus making dynamic attacks harder. Several applications
of the renewability framework have been discussed, some of which ex-
tend existing protections, and some of which enforce existing protections.
The prototype implementation was evaluated successfully on a number
of use cases, including complex libraries representative for real-world,
industrial use cases. Most of the prototype implementations are available
online as open source.

Some future work would be the authentication and verification of
renewed mobile blocks. This was deliberately not discussed, as we con-
sider it to be out of scope for this chapter, but does pose some challenges.
Executing code one just downloaded from the internet without verifying
it first is of course a recipe for disaster, and is almost the definition of ar-
bitrary code execution. Client-side verification of these renewed mobile
blocks is thus a must, and the code responsible for this verification ought
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to be suitably hardened. The server-side infrastructure to sign mobile
blocks is of course also required, and can become a target as well.



Chapter 7

Conclusions and Future Work

“Now, here, you see, it takes all the running you can do, to keep in the same place. If
you want to get somewhere else, you must run at least twice as fast as that!”

—The Red Queen, Through the Looking-Glass

In my research I focused on two attack models. In one model, at-
tackers use bugs in programs to gain arbitrary code execution in these
programs with the goal of subverting the ... . . .OS, and taking actions for
which they have no authorization. In a . . . . . . . . . . . .MATE attack, on the other hand,
attackers are assumed to have complete control over the ... . . .OS, and it is
the program itself which needs to provide protections against attackers
attempting to compromise its assets. In this chapter I will briefly restate
my contributions to the state of the art in defending against both attack
models, and provide some possible future research directions.

Program diversification provides a probabilistic defense against at-
tacks aiming to gain arbitrary code execution, and obstructs ... . . . . . . . . .MATE attack-
ers as well. Having every user run their own program binary presents
some challenges however, slowing the adoption of diversification tech-
niques. One of these challenges is running a crash-reporting system for
diversified binaries. In Chapter 3 we therefore presented ∆Breakpad,
an approach where programs are diversified and extended with some
∆data, allowing the crash-reporting server to correctly interpret any
minidump sent by the program. Our approach thus makes it easier
to use diversification in practice, which allows for improved security.
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Further improvements to our approach can be made with respect to the
diversification techniques we used in our implementation. Currently
these are rather simple, and it is worthwhile to investigate whether more
complex techniques can be supported and which effect this will have
in terms of ∆data. Specifically, it would be interesting to investigate
program diversification with dynamic techniques. A dynamic diver-
sification technique only diversifies the program at run time. Every
execution of the program can then be diversified differently, and a pro-
gram can even be re-diversified during its execution. The diversification
happens client-side, however, where no symbol file or ∆Breakpad func-
tionality is present. While the seed used for a dynamic diversification can
be sent to the crash-reporting server just as easily as before, the question
of whether and how any ∆data is generated, is harder.

Although many techniques protecting against ... . . . . . . . . .MATE attacks already
existed, there was still room for improvement. Chapter 4 and Chapter 5
present our improvements to the self-debugging and code mobility tech-
niques, respectively. First, in our improved self-debugging technique,
code fragments are migrated from the program to its self-debugger. This
way, the semantics of the code in the self-debugger is not predetermined,
and multiple control flow paths are possible for every invocation. This
makes attacks on self-debugging programs significantly harder. Second,
our improved code mobility technique allows for selectively making
certain parts of the program mobile, through source code annotations.
This makes code comprehension harder, but also allows for replacing
parts of the program and its protections.

While improving individual protection techniques is important, mak-
ing it harder for ... . . . . . . . . .MATE attackers to use one attack vector might focus
their attention on other attack vectors that become easier by comparison.
Therefore, it is even more important to combine multiple techniques
to ensure possible paths-of-least-resistance are hardened. Diversifying
these combinations and their constituent techniques across different
user instances makes it harder for attackers to scale up their attacks.
Furthermore, repeatability is important to attackers, who depend on
the expectation that attacks keep working on repeated executions of the
same software. Consequently, diversifying across time and renewing
parts of protections shortens the time during which they can develop
and derive income from an attack. Therefore, in Chapter 6 we presented
the renewability framework. This framework builds on our code mo-
bility technique to support several forms of renewability. Renewed and
diversified code and data belonging to either the original application or
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to protection components is delivered from a secure server to a client
application on demand. The frequent changes to the software compo-
nents under attack, and consequently make it even harder—and less
profitable—to attack the software.

The development of this renewability framework and these improve-
ments to existing techniques have pushed the state of the art in protecting
against ... . . . . . . . . . .MATE attacks. They make it harder for attackers to make unau-
thorized use of valuable assets embedded in software, and thus make
attacks both less likely and less profitable. There is still worthwhile
research to be done both in improving these protection techniques, and
in combining and renewing them. An improvement that should defi-
nitely be investigated is reciprocal debugging, where the self-debugger
not only debugs the program, but the program also debugs the self-
debugger. In the past year I have performed research to that effect, the
results of which could not be included in this dissertation for reasons
of intellectual property rights. As for combining protections, future
work could focus on optimizing these combinations in terms of paths-of-
least-resistance, within certain limits to performance overhead. Certain
combinations of protection techniques can also create synergies, with the
combination being “stronger” as the sum of the individual protections.
Investigating such synergies further would be a worthy enterprise, just
like investigating the renewability of more protection techniques and
even of communication protocols.

In conclusion, I presented a number of improvements to the defensive
side of software security. Undoubtedly, in the future attackers will refine
their own tools, prompting the development of even better protections.
Such, as they say, is life.
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Appendix A

Quantitative Analysis for
∆-Minimization

Histograms (a) and (b) in Figure A.1 quantify the effect of adding (de-
fault) padding to functions on their code size. These histograms show
how the function code sizes change as a result of adding 32 different
amounts of padding (8, 16, ..., 256) to each function in our benchmark
suite compiled with -O2 -fomit-frame-pointer for part (a) and with
-O2 for part (b)—the histograms look similar with other options. The
blue and gray histograms show the changeswhen the default binary does
not include 8 bytes of padding, the orange and purple histograms show
the changes when the default binary does include 8 bytes of padding.

Notice that many size increases and size reductions are obtained
exactly 32 or 64 times in the blue and gray histograms. This follows from
the fact that the same increase or reduction in size was observed for all of
the 32 diversified versions of a specific function compared to its default
version without any padding. In the orange and purple histograms,
that situation does not occur. Clearly, the changes on average become
much smaller with the default padding. The average (absolute values of
the) changes are 6.03 (respectively, 5.90) bytes/function without default
padding, and only 0.036 (respectively, 0.013) bytes/function with default
padding. Also, the orange and purple histograms peak at zero, whereas
the blue and gray ones peak at 8. So with the default padding, there are
many more functions for which diversified stack padding has no effect at
all on code size. Clearly, the default padding of 8 bytes is advantageous
for ∆ minimization.

These numbers also indicate that the function size deltas between
default and diversified files are smaller on average for code compiled
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APPENDIX A. QUANTITATIVE ANALYSIS FOR

∆-MINIMIZATION

(a) Benchmarks compiled without ... . .FP, with and without default padding, and
with ... . .SP/... . .FP-optimization disabled
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(c) Benchmarks compiled with ... . .FP, with default stack padding, with
... . .SP/... . .FP-optimization enabled and disabled
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Figure A.1: Histograms of the variation in function size. The Y-axes start at 0.1
to visualize the difference between 0 and 1. The presented average numbers
are averages of absolute values of positive and negative variations.

with ... . . .FPs than for code compiled without ... . . .FPs. The difference is almost
completely due to function versions where the non-zero delta when
compiled with ... . .FP grows bigger (i.e., more positive or more negative) in
code compiled without ... . .FP. The number of function versions with zero
delta compared to the default 8 byte padding version remains almost



155

constant with or without ... . .FP: Over 99.94% of the 892K function versions
(out of 895k total) that do not grow or shrink in our experiments as a
result of stack padding when compiled with ... . .FP, still do not grow or
shrink when compiled without ... . .FP.

Histogram (c) in Figure A.1 visualizes the effect on function code
size of disabling the ... . .SP/... . .FP relative stack access optimization. On av-
erage, the difference in size drops from 0.036 bytes/function to 0.013
bytes/function.
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APPENDIX A. QUANTITATIVE ANALYSIS FOR

∆-MINIMIZATION
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